{"title":"In-depth understanding and precise modulation of surface reconstruction during heterogeneous electrocatalysis: From model to practical catalyst","authors":"Weidong Dai, Kaiwei Wan, Kanglei Pang, Jun Guo, Siyuan Liu, Keying Wu, Chiyao Tang, Yanjuan Sun, Xinghua Shi, Zhiyong Tang, Chang Long, Fan Dong","doi":"10.1016/j.chempr.2024.10.012","DOIUrl":null,"url":null,"abstract":"Renewable energy-driven heterogeneous electrocatalysis holds tremendous potential in converting earth-abundant small molecules and industrial pollutants into value-added or environmentally friendly chemicals, sparking global research interest. The catalyst-electrolyte interface has long been at the forefront of heterogeneous electrocatalysis, dealing with the structure-performance relationship between the performance and the catalytic system, consisting of catalysts, electrolytes, and external biases, at the molecular or atomic level. However, recent observations of numerous surface reconstruction phenomena have challenged the traditional research paradigm that relies on static interface models to elucidate structure-performance relationships. This perspective focuses on the catalyst-electrolyte interface model and rationalizes the underlying principles of catalyst surface reconstruction behavior in terms of free energy. It then showcases the influence of pre-catalyst structure, electrolyte (including additives and reaction intermediates), and external bias on surface reconstruction, alongside state-of-the-art modulation strategies based on the current understanding of surface construction. Finally, we highlight critical issues for future research on catalyst surface reconstruction, including the unexplored factors influencing reconstruction and reaction types, the necessary developments in <em>in situ</em> characterization and simulation techniques, and the currently overlooked problem of catalyst deactivation.","PeriodicalId":268,"journal":{"name":"Chem","volume":"204 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable energy-driven heterogeneous electrocatalysis holds tremendous potential in converting earth-abundant small molecules and industrial pollutants into value-added or environmentally friendly chemicals, sparking global research interest. The catalyst-electrolyte interface has long been at the forefront of heterogeneous electrocatalysis, dealing with the structure-performance relationship between the performance and the catalytic system, consisting of catalysts, electrolytes, and external biases, at the molecular or atomic level. However, recent observations of numerous surface reconstruction phenomena have challenged the traditional research paradigm that relies on static interface models to elucidate structure-performance relationships. This perspective focuses on the catalyst-electrolyte interface model and rationalizes the underlying principles of catalyst surface reconstruction behavior in terms of free energy. It then showcases the influence of pre-catalyst structure, electrolyte (including additives and reaction intermediates), and external bias on surface reconstruction, alongside state-of-the-art modulation strategies based on the current understanding of surface construction. Finally, we highlight critical issues for future research on catalyst surface reconstruction, including the unexplored factors influencing reconstruction and reaction types, the necessary developments in in situ characterization and simulation techniques, and the currently overlooked problem of catalyst deactivation.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.