Resonant sub-Neptunes are puffier

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-06-27 DOI:10.1051/0004-6361/202450587
Adrien Leleu, Jean-Baptiste Delisle, Remo Burn, André Izidoro, Stéphane Udry, Xavier Dumusque, Christophe Lovis, Sarah Millholland, Léna Parc, François Bouchy, Vincent Bourrier, Yann Alibert, João Faria, Christoph Mordasini, Damien Ségransan
{"title":"Resonant sub-Neptunes are puffier","authors":"Adrien Leleu, Jean-Baptiste Delisle, Remo Burn, André Izidoro, Stéphane Udry, Xavier Dumusque, Christophe Lovis, Sarah Millholland, Léna Parc, François Bouchy, Vincent Bourrier, Yann Alibert, João Faria, Christoph Mordasini, Damien Ségransan","doi":"10.1051/0004-6361/202450587","DOIUrl":null,"url":null,"abstract":"A systematic, population-level discrepancy exists between the densities of exoplanets whose masses have been measured with transit timing variations (TTVs) versus those measured with radial velocities (RVs). Since the TTV planets are predominantly nearly resonant, it is still unclear whether the discrepancy is attributed to detection biases or to astrophysical differences between the nearly resonant and non resonant planet populations. We defined a controlled, unbiased sample of 36 sub-Neptunes characterised by <i>Kepler<i/>, TESS, HARPS, and ESPRESSO. We found that their density depends mostly on the resonant state of the system, with a low probability (of ) that the mass of (nearly) resonant planets is drawn from the same underlying population as the bulk of sub-Neptunes. Increasing the sample to 133 sub-Neptunes reveals finer details: the densities of resonant planets are similar and lower than non-resonant planets, and both the mean and spread in density increase for planets that are away from resonance. This trend is also present in RV-characterised planets alone. In addition, TTVs and RVs have consistent density distributions for a given distance to resonance. We also show that systems closer to resonances tend to be more co-planar than their spread-out counterparts. These observational trends are also found in synthetic populations, where planets that survived in their original resonant configuration retain a lower density; whereas less compact systems have undergone post-disc giant collisions that increased the planet’s density, while expanding their orbits. Our findings reinforce the claim that resonant systems are archetypes of planetary systems at their birth.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450587","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A systematic, population-level discrepancy exists between the densities of exoplanets whose masses have been measured with transit timing variations (TTVs) versus those measured with radial velocities (RVs). Since the TTV planets are predominantly nearly resonant, it is still unclear whether the discrepancy is attributed to detection biases or to astrophysical differences between the nearly resonant and non resonant planet populations. We defined a controlled, unbiased sample of 36 sub-Neptunes characterised by Kepler, TESS, HARPS, and ESPRESSO. We found that their density depends mostly on the resonant state of the system, with a low probability (of ) that the mass of (nearly) resonant planets is drawn from the same underlying population as the bulk of sub-Neptunes. Increasing the sample to 133 sub-Neptunes reveals finer details: the densities of resonant planets are similar and lower than non-resonant planets, and both the mean and spread in density increase for planets that are away from resonance. This trend is also present in RV-characterised planets alone. In addition, TTVs and RVs have consistent density distributions for a given distance to resonance. We also show that systems closer to resonances tend to be more co-planar than their spread-out counterparts. These observational trends are also found in synthetic populations, where planets that survived in their original resonant configuration retain a lower density; whereas less compact systems have undergone post-disc giant collisions that increased the planet’s density, while expanding their orbits. Our findings reinforce the claim that resonant systems are archetypes of planetary systems at their birth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共振的次海王星更蓬松
用凌日时间变化(TTVs)测量的系外行星质量与用径向速度(RVs)测量的系外行星质量之间存在着系统的、种群级的差异。由于TTV行星主要是近共振行星,目前还不清楚这种差异是由于探测偏差还是近共振行星群与非共振行星群之间的天体物理差异造成的。我们定义了一个由开普勒、TESS、HARPS 和 ESPRESSO 表征的 36 个亚海王星组成的可控、无偏见样本。我们发现,它们的密度主要取决于系统的共振状态,(接近)共振行星的质量来自与大部分亚海王星相同的基本星群的概率很低(为)。将样本增加到 133 颗次海王星,可以发现更多细节:共振行星的密度类似于非共振行星,而且低于非共振行星,远离共振的行星密度的平均值和差值都会增加。这种趋势也存在于RV特征的行星中。此外,在距离共振一定距离的情况下,TTV 和 RV 的密度分布是一致的。我们还发现,与距离共振较远的系统相比,距离共振较近的系统更倾向于共平面。这些观测趋势在合成种群中也有发现,在合成种群中,以原始共振构型存活的行星密度较低;而密度较低的系统则经历了盘后巨碰撞,增加了行星的密度,同时扩大了它们的轨道。我们的发现加强了共振系统是行星系统诞生时的原型这一说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1