Mass scaling relations for dark halos from an analytic universal outer density profile

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-09-30 DOI:10.1051/0004-6361/202449704
Giorgos Korkidis, Vasiliki Pavlidou
{"title":"Mass scaling relations for dark halos from an analytic universal outer density profile","authors":"Giorgos Korkidis, Vasiliki Pavlidou","doi":"10.1051/0004-6361/202449704","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> The average matter density within the turnaround scale, which demarcates where galaxies shift from clustering around a structure to joining the expansion of the Universe, is an important cosmological probe. However, a measurement of the mass enclosed by the turnaround radius is difficult. Analyses of the turnaround scale in simulated galaxy clusters place the turnaround radius at about three times the virial radius in a ΛCDM universe and at a (present-day) density contrast with the background matter density of the Universe of <i>δ<i/> ~ 11. Assessing the mass at such extended distances from a cluster’s center is a challenge for current mass measurement techniques. Consequently, there is a need to develop and validate new mass-scaling relations, to connect observable masses at cluster interiors with masses at greater distances.<i>Aims.<i/> Our research aims to establish an analytical framework for the most probable mass profile of galaxy clusters, leading to novel mass scaling relations, allowing us to estimate masses at larger scales. We derive such analytical mass profiles and compare them with those from cosmological simulations.<i>Methods.<i/> We used excursion set theory, which provides a statistical framework for the density and local environment of dark matter halos, and complement it with the spherical collapse model to follow the non-linear growth of these halos.<i>Results.<i/> The profile we developed analytically showed good agreement (better than 30%, and dependent on halo mass) with the mass profiles of simulated galaxy clusters. Mass scaling relations were obtained from the analytical profile with offset better than 15% from the simulated ones. This level of precision highlights the potential of our model for probing structure formation dynamics at the outskirts of galaxy clusters.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202449704","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The average matter density within the turnaround scale, which demarcates where galaxies shift from clustering around a structure to joining the expansion of the Universe, is an important cosmological probe. However, a measurement of the mass enclosed by the turnaround radius is difficult. Analyses of the turnaround scale in simulated galaxy clusters place the turnaround radius at about three times the virial radius in a ΛCDM universe and at a (present-day) density contrast with the background matter density of the Universe of δ ~ 11. Assessing the mass at such extended distances from a cluster’s center is a challenge for current mass measurement techniques. Consequently, there is a need to develop and validate new mass-scaling relations, to connect observable masses at cluster interiors with masses at greater distances.Aims. Our research aims to establish an analytical framework for the most probable mass profile of galaxy clusters, leading to novel mass scaling relations, allowing us to estimate masses at larger scales. We derive such analytical mass profiles and compare them with those from cosmological simulations.Methods. We used excursion set theory, which provides a statistical framework for the density and local environment of dark matter halos, and complement it with the spherical collapse model to follow the non-linear growth of these halos.Results. The profile we developed analytically showed good agreement (better than 30%, and dependent on halo mass) with the mass profiles of simulated galaxy clusters. Mass scaling relations were obtained from the analytical profile with offset better than 15% from the simulated ones. This level of precision highlights the potential of our model for probing structure formation dynamics at the outskirts of galaxy clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从通用外密度剖面分析暗晕的质量缩放关系
背景。星系从聚集在某个结构周围转向加入宇宙膨胀的过程中,转折尺度内的平均物质密度是一个重要的宇宙学探测指标。然而,要测量转折半径所包围的质量却很困难。对模拟星系团的旋转尺度的分析表明,在ΛCDM宇宙中,旋转半径大约是virial半径的三倍,与宇宙背景物质密度的(现今)密度对比为δ ~ 11。在距离星团中心如此遥远的距离上评估质量对目前的质量测量技术来说是一个挑战。因此,有必要开发和验证新的质量比例关系,将星团内部的可观测质量与更远距离的质量联系起来。我们的研究旨在为星系团最可能的质量分布建立一个分析框架,从而得出新的质量比例关系,使我们能够估算更大尺度上的质量。我们推导出这种分析质量曲线,并将其与宇宙学模拟的质量曲线进行比较。我们使用了偏移集理论,该理论为暗物质光环的密度和局部环境提供了一个统计框架,并与球形坍缩模型相辅相成,以跟踪这些光环的非线性增长。我们通过分析得出的质量曲线与模拟星系团的质量曲线显示出良好的一致性(优于 30%,并且取决于晕的质量)。根据分析得出的质量缩放关系与模拟质量缩放关系的偏移优于 15%。这种精确程度突出了我们的模型在探测星系团外围结构形成动力学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1