{"title":"A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration.","authors":"Han Guo, Dayin Wang, Shilun Feng, Kaihuan Zhang, Yuan Luo, Jianlong Zhao","doi":"10.1063/5.0208417","DOIUrl":null,"url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0208417","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.
小细胞外囊泡(sEVs)是直径介于 30 纳米到 150 纳米之间的细胞外囊泡,内含蛋白质和核酸,能反映其来源细胞,是细胞间通信的重要媒介。由于含有各种细胞外囊泡的生物流体成分复杂,阻碍了对 sEVs 的全面分析。超速离心和免疫亲和捕获等传统分离方法在操作复杂性、成本和回收率方面面临常规挑战。微流控技术,尤其是粘弹性微流控技术,因其无需现场操作、操作过程快速简单、样品消耗量极少等优点,为 sEV 分离提供了一种前景广阔的替代方法。在此背景下,我们在此介绍一种创新的粘弹性方法,旨在利用粘度梯度诱导力的尺寸依赖特性,从而实现纳米级颗粒和 sEV 与较大杂质的高效分离。我们首先试图说明粘度梯度诱导力的基本机制,然后用荧光纳米粒子进行实验验证,证明分离结果与定性分析一致。我们相信,这项工作是首次在微流控背景下报告这种粘度梯度诱导现象。该方法的目标纯度和回收率都达到了 80%。我们进一步展示了使用我们的设备进行有效的 sEV 分离,展示了其在实际生物环境中的功效,突出了其作为基础生物研究和临床应用中 sEV 分析的多功能、无标记平台的潜力。
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...