Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images

Qiang Wang, Ahsan R. Akram, David A. Dorward, Sophie Talas, Basil Monks, Chee Thum, James R. Hopgood, Malihe Javidi, Marta Vallejo
{"title":"Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images","authors":"Qiang Wang, Ahsan R. Akram, David A. Dorward, Sophie Talas, Basil Monks, Chee Thum, James R. Hopgood, Malihe Javidi, Marta Vallejo","doi":"10.1038/s44303-024-00021-7","DOIUrl":null,"url":null,"abstract":"Label-free autofluorescence lifetime is a unique feature of the inherent fluorescence signals emitted by natural fluorophores in biological samples. Fluorescence lifetime imaging microscopy (FLIM) can capture these signals enabling comprehensive analyses of biological samples. Despite the fundamental importance and wide application of FLIM in biomedical and clinical sciences, existing methods for analysing FLIM images often struggle to provide rapid and precise interpretations without reliable references, such as histology images, which are usually unavailable alongside FLIM images. To address this issue, we propose a deep learning (DL)-based approach for generating virtual Hematoxylin and Eosin (H&E) staining. By combining an advanced DL model with a contemporary image quality metric, we can generate clinical-grade virtual H&E-stained images from label-free FLIM images acquired on unstained tissue samples. Our experiments also show that the inclusion of lifetime information, an extra dimension beyond intensity, results in more accurate reconstructions of virtual staining when compared to using intensity-only images. This advancement allows for the instant and accurate interpretation of FLIM images at the cellular level without the complexities associated with co-registering FLIM and histology images. Consequently, we are able to identify distinct lifetime signatures of seven different cell types commonly found in the tumour microenvironment, opening up new opportunities towards biomarker-free tissue histology using FLIM across multiple cancer types.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00021-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Label-free autofluorescence lifetime is a unique feature of the inherent fluorescence signals emitted by natural fluorophores in biological samples. Fluorescence lifetime imaging microscopy (FLIM) can capture these signals enabling comprehensive analyses of biological samples. Despite the fundamental importance and wide application of FLIM in biomedical and clinical sciences, existing methods for analysing FLIM images often struggle to provide rapid and precise interpretations without reliable references, such as histology images, which are usually unavailable alongside FLIM images. To address this issue, we propose a deep learning (DL)-based approach for generating virtual Hematoxylin and Eosin (H&E) staining. By combining an advanced DL model with a contemporary image quality metric, we can generate clinical-grade virtual H&E-stained images from label-free FLIM images acquired on unstained tissue samples. Our experiments also show that the inclusion of lifetime information, an extra dimension beyond intensity, results in more accurate reconstructions of virtual staining when compared to using intensity-only images. This advancement allows for the instant and accurate interpretation of FLIM images at the cellular level without the complexities associated with co-registering FLIM and histology images. Consequently, we are able to identify distinct lifetime signatures of seven different cell types commonly found in the tumour microenvironment, opening up new opportunities towards biomarker-free tissue histology using FLIM across multiple cancer types.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的无标记自发荧光寿命图像虚拟 H&E 染色。
无标记自发荧光寿命是生物样品中天然荧光团发出的固有荧光信号的一个独特特征。荧光寿命成像显微镜(FLIM)可以捕捉这些信号,从而对生物样本进行全面分析。尽管荧光寿命成像显微镜在生物医学和临床科学中具有根本性的重要意义和广泛应用,但现有的荧光寿命成像显微镜图像分析方法往往难以在没有可靠参照物(如组织学图像)的情况下提供快速、精确的解释,因为组织学图像通常无法与荧光寿命成像显微镜图像一起提供。为了解决这个问题,我们提出了一种基于深度学习(DL)的方法,用于生成虚拟的血红素和伊红(H&E)染色。通过将先进的深度学习模型与当代图像质量度量相结合,我们可以从在未染色组织样本上获取的无标记 FLIM 图像生成临床级虚拟 H&E 染色图像。我们的实验还表明,与仅使用强度图像相比,加入生命周期信息(强度之外的额外维度)能更准确地重建虚拟染色。这一进步使我们能够在细胞层面即时准确地解读 FLIM 图像,而无需处理 FLIM 和组织学图像的复杂性。因此,我们能够识别肿瘤微环境中常见的七种不同细胞类型的不同寿命特征,为在多种癌症类型中使用 FLIM 实现无生物标记组织组学开辟了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers Metabolic nanoscopy enhanced by experimental and computational approaches Ultrahigh-field animal MRI system with advanced technological update Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy Evaluation of the redox alteration in Duchenne muscular dystrophy model mice using in vivo DNP-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1