Detecting Toe-Off and Initial Contact in Real-Time With Self-Adapting Thresholds.

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-11-01 DOI:10.1115/1.4065842
Sofya M Akhetova, Rebecca Roembke, Peter Adamczyk
{"title":"Detecting Toe-Off and Initial Contact in Real-Time With Self-Adapting Thresholds.","authors":"Sofya M Akhetova, Rebecca Roembke, Peter Adamczyk","doi":"10.1115/1.4065842","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, \"Real-Time Gait Event Detection Using Wearable Sensors,\" Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, \"A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation,\" IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065842","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, "Real-Time Gait Event Detection Using Wearable Sensors," Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, "A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation," IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自适应阈值实时检测 "脚尖离开 "和 "初始接触"。
这项研究引入了一种自适应控制算法,旨在利用贴在小腿上的惯性测量单元(IMU)实时确定步态相位。该算法侧重于检测特定的步态事件,主要是初始接触(IC)和脚尖离开(TO),利用动态阈值和比率,在一定的步行速度范围内自适应地准确确定事件。内置的安全检查进一步确保了精确度,并将误检率降至最低。我们用八名以不同速度行走的参与者验证了该算法。该算法在检测 IC 和 TO 事件方面取得了令人满意的结果,平均延迟时间分别为 8.70 毫秒和 5.43 毫秒,检测成功率分别为 100%和 99.72%。这些结果与已有算法的基准一致。此外,该算法的自适应特性确保其可用于不同的运动场景,为实时步态相位检测提供了一个前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Biomechanical Analysis for Enhanced Expulsion-Proof Intervertebral Fusion Device. Multiscale Finite Element Modeling of Human Ear for Acoustic Wave Transmission Into Cochlea and Hair Cells Fatigue Failure. Toward a Consistent Framework for Describing the Free Vibration Modes of the Brain. Quantification of Internal Disc Strain Under Dynamic Loading Via High-Frequency Ultrasound. The Influence of Occupant Characteristics, Seat Positioning, and Pre-Crash Maneuvers on Front Passenger Safety Performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1