Toward a Consistent Framework for Describing the Free Vibration Modes of the Brain.

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-04-01 DOI:10.1115/1.4067699
Turner Jennings, Rouzbeh Amini, Sinan Müftü
{"title":"Toward a Consistent Framework for Describing the Free Vibration Modes of the Brain.","authors":"Turner Jennings, Rouzbeh Amini, Sinan Müftü","doi":"10.1115/1.4067699","DOIUrl":null,"url":null,"abstract":"<p><p>Frequency-domain analysis of brain tissue motion has received increased focus in recent years as an approach to describing the response of the brain to impact or vibration sources in the built environment. While researchers in many experimental and numerical studies have sought to identify natural resonant frequencies of the brain, sparse description of the associated vibration modes limits comparison of results between studies. We performed a modal analysis to extract the natural frequencies and associated mode shapes of a finite element (FE) model of the head. The vibration modes were characterized using two-dimensional (2D) plate deformation notation in the basic medical planes. Many of the vibration modes characterized are similar to those found in previous numerical and experimental studies. We propose this characterization method as an approach to increase compatibility of results between studies of brain vibration behavior.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4067699","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency-domain analysis of brain tissue motion has received increased focus in recent years as an approach to describing the response of the brain to impact or vibration sources in the built environment. While researchers in many experimental and numerical studies have sought to identify natural resonant frequencies of the brain, sparse description of the associated vibration modes limits comparison of results between studies. We performed a modal analysis to extract the natural frequencies and associated mode shapes of a finite element (FE) model of the head. The vibration modes were characterized using two-dimensional (2D) plate deformation notation in the basic medical planes. Many of the vibration modes characterized are similar to those found in previous numerical and experimental studies. We propose this characterization method as an approach to increase compatibility of results between studies of brain vibration behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向描述大脑自由振动模式的一致框架。
近年来,脑组织运动的频域分析作为描述大脑对建筑环境中冲击或振动源的反应的一种方法受到越来越多的关注。虽然研究人员在许多实验和数值研究中都试图确定大脑的自然共振频率,但对相关振动模式的有限描述限制了研究结果之间的比较。我们进行了模态分析,以提取头部有限元模型的固有频率和相关模态振型。在基本医疗平面上采用二维板变形符号对振动模式进行表征。许多振动模式的特征与以前的数值和实验研究中发现的相似。我们提出这种表征方法作为一种方法来增加脑振动行为研究之间结果的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Biomechanical Analysis for Enhanced Expulsion-Proof Intervertebral Fusion Device. Multiscale Finite Element Modeling of Human Ear for Acoustic Wave Transmission Into Cochlea and Hair Cells Fatigue Failure. Toward a Consistent Framework for Describing the Free Vibration Modes of the Brain. Quantification of Internal Disc Strain Under Dynamic Loading Via High-Frequency Ultrasound. The Influence of Occupant Characteristics, Seat Positioning, and Pre-Crash Maneuvers on Front Passenger Safety Performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1