A novel battery management scheme for critical loads

Energy Storage Pub Date : 2024-06-25 DOI:10.1002/est2.675
Lakshmi Sravan Bandatmakuru, Srinivasa Rao Sandepudi
{"title":"A novel battery management scheme for critical loads","authors":"Lakshmi Sravan Bandatmakuru,&nbsp;Srinivasa Rao Sandepudi","doi":"10.1002/est2.675","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a novel battery management system (BMS) to ensure uninterruptible power delivery to a 48 V DC bus used for electric vehicle charging stations, data centers, telecommunication systems, and critical care units such as hospitals. The proposed BMS facilitates constant current and constant voltage charging to maintain optimal battery performance during normal operation. This BMS is designed for effective control, monitoring and protection of two lead-acid battery units to form battery energy storage system (BESS). Furthermore, it is capable of isolating batteries in abnormal conditions and operates them independently to provide reliable supply at output terminals with full capacity. The system utilizes a 30 V DC source derived from AC mains or solar photovoltaic system. This supply is used to charge the BESS and also supply to the load. In the event of failure of 30 V supply, it seamlessly transits to BESS mode to supply power to boost converter to maintain constant 48 V DC output at load terminal. The proposed system architecture not only enhances power reliability but also improves overall system efficiency, making it well-suited for critical applications require continuous and stable power supply. Simulation studies using Matlab/Simulink and analytical results using TINA (Tool kit for Interactive Network Analysis) are presented to show that 48 V DC supply is maintained at output terminals during failure of input 30 V DC source or failure of one battery unit.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a novel battery management system (BMS) to ensure uninterruptible power delivery to a 48 V DC bus used for electric vehicle charging stations, data centers, telecommunication systems, and critical care units such as hospitals. The proposed BMS facilitates constant current and constant voltage charging to maintain optimal battery performance during normal operation. This BMS is designed for effective control, monitoring and protection of two lead-acid battery units to form battery energy storage system (BESS). Furthermore, it is capable of isolating batteries in abnormal conditions and operates them independently to provide reliable supply at output terminals with full capacity. The system utilizes a 30 V DC source derived from AC mains or solar photovoltaic system. This supply is used to charge the BESS and also supply to the load. In the event of failure of 30 V supply, it seamlessly transits to BESS mode to supply power to boost converter to maintain constant 48 V DC output at load terminal. The proposed system architecture not only enhances power reliability but also improves overall system efficiency, making it well-suited for critical applications require continuous and stable power supply. Simulation studies using Matlab/Simulink and analytical results using TINA (Tool kit for Interactive Network Analysis) are presented to show that 48 V DC supply is maintained at output terminals during failure of input 30 V DC source or failure of one battery unit.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于关键负载的新型电池管理方案
本文提出了一种新型电池管理系统(BMS),以确保向电动汽车充电站、数据中心、电信系统和医院等重症监护室使用的 48 V 直流总线不间断供电。拟议的 BMS 可实现恒流和恒压充电,从而在正常运行期间保持最佳的电池性能。该 BMS 设计用于有效控制、监测和保护两个铅酸电池单元,以形成电池储能系统(BESS)。此外,它还能在异常情况下隔离电池,并使其独立运行,为输出端提供可靠的全容量供电。该系统利用交流电源或太阳能光伏系统提供的 30 V 直流电源。该电源用于为 BESS 充电,同时也为负载供电。如果 30 V 电源出现故障,系统会无缝切换到 BESS 模式,为升压转换器供电,以保持负载端 48 V 直流输出恒定。所提出的系统架构不仅增强了电源可靠性,还提高了整体系统效率,非常适合需要持续稳定供电的关键应用。使用 Matlab/Simulink 进行的仿真研究和使用 TINA(交互式网络分析工具包)得出的分析结果表明,在输入 30 V 直流电源失效或一个电池单元失效时,输出端仍能保持 48 V 直流电源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning Dependent Controller for Advanced Ultracapacitor SoC Concept to Increase Battery Life Span of Electric Vehicles Machine-Learning-Based Accurate Prediction of Vanadium Redox Flow Battery Temperature Rise Under Different Charge–Discharge Conditions Machine Learning Applied to Lithium-Ion Battery State Estimation for Electric Vehicles: Method Theoretical, Technological Status, and Future Development Solar Powered Electric Vehicle Charging Station With Integrated Battery Storage System Comparative Analysis of Structural, Optical, and Electronic Properties of Nickel Oxide and Potassium-Doped Nickel Oxide Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1