Ultralow thermal conductivity and high ZT of Cu2Se-based thermoelectric materials mediated by TiO2−n nanoclusters

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-09-18 DOI:10.1016/j.joule.2024.06.007
{"title":"Ultralow thermal conductivity and high ZT of Cu2Se-based thermoelectric materials mediated by TiO2−n nanoclusters","authors":"","doi":"10.1016/j.joule.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Cu<sub>2</sub><span><span><span>Se is a promising p-type thermoelectric material for energy harvesting due to its intrinsically low </span>thermal conductivity arising from the liquid-like </span>Cu ions, leaving very limited room for regulation of phonon propagation. Herein, the thermal conductivity of superionic Cu</span><sub>2</sub><span>Se is efficiently mediated by titanium oxide nanoclusters, leading to an exceptionally high thermoelectric figure of merit (</span><em>ZT</em>) at high temperatures. By controlling the oxygen deficiency, the sophisticated TiO<sub>2−n</sub> architectures can be constructed with optimized phase composition and electrical properties. The presence of p-n junctions helps to reduce carrier concentration without degrading mobility, and the complex heterogeneous interfaces generated by TiO<sub>2−n</sub> nanoclusters give rise to huge interfacial thermal resistance. Benefiting from the suppressed electrical transport and enhanced phonon scattering, the total thermal conductivity shows a reduction of at least 36%, contributing to a high <em>ZT</em> value of 2.8 at 973 K. This work demonstrates a paradigm of modulating thermal transport through the self-assembly design.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2652-2666"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu2Se is a promising p-type thermoelectric material for energy harvesting due to its intrinsically low thermal conductivity arising from the liquid-like Cu ions, leaving very limited room for regulation of phonon propagation. Herein, the thermal conductivity of superionic Cu2Se is efficiently mediated by titanium oxide nanoclusters, leading to an exceptionally high thermoelectric figure of merit (ZT) at high temperatures. By controlling the oxygen deficiency, the sophisticated TiO2−n architectures can be constructed with optimized phase composition and electrical properties. The presence of p-n junctions helps to reduce carrier concentration without degrading mobility, and the complex heterogeneous interfaces generated by TiO2−n nanoclusters give rise to huge interfacial thermal resistance. Benefiting from the suppressed electrical transport and enhanced phonon scattering, the total thermal conductivity shows a reduction of at least 36%, contributing to a high ZT value of 2.8 at 973 K. This work demonstrates a paradigm of modulating thermal transport through the self-assembly design.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 TiO2-n 纳米团簇为介质的 Cu2Se 基热电材料的超低热导率和高 ZT
Cu2Se 是一种用于能量收集的前景广阔的 p 型热电材料,这是因为液态 Cu 离子具有固有的低热导率,使得声子传播的调节空间非常有限。在这里,超离子 Cu2Se 的热导率由氧化钛纳米团簇有效调解,从而在高温下实现了极高的热电功勋值 (ZT)。通过控制缺氧,可以构建具有优化相组成和电性能的复杂 TiO2-n 结构。p-n 结的存在有助于在不降低迁移率的情况下降低载流子浓度,而 TiO2-n 纳米团簇产生的复杂异质界面则会产生巨大的界面热阻。得益于被抑制的电传输和增强的声子散射,总热导率降低了至少 36%,从而在 973 K 时实现了 2.8 的高 ZT 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Temperature-dependent solid electrolyte interphase reactions drive performance in lithium-mediated nitrogen reduction to ammonia A universal approach to high-performance thermoelectric module design for power generation In situ hydrogen generation from underground fossil hydrocarbons Interlayer-expanded carbon anodes with exceptional rates and long-term cycling via kinetically decoupled carbonization In situ electrochemical regeneration of permanganate ion for sustainable oxidation reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1