Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease

IF 12.5 1区 医学 Q1 CELL BIOLOGY Ageing Research Reviews Pub Date : 2024-07-02 DOI:10.1016/j.arr.2024.102373
{"title":"Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease","authors":"","doi":"10.1016/j.arr.2024.102373","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion \"excretion\" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.</p></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724001910","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型溶酶体质子通道 TMEM175 参与帕金森病的机制和治疗靶点。
帕金森病(Parkinson's disease,PD)被认为是老龄人口中第二大最常见的神经退行性疾病,由于目前缺乏有效的治疗方法来缓解其进展,因此给人们带来了巨大的挑战。许多帕金森氏症的发病机制都与溶酶体功能障碍有关。此外,大量遗传学研究表明,溶酶体膜蛋白 TMEM175 与罹患帕金森氏症的风险有显著相关性。在这一发现的基础上,TMEM175 被鉴定为一种新型钾离子通道。耐人寻味的是,进一步的研究发现,钾离子通道在溶酶体的微环境中会逐渐关闭并转变为氢离子 "排泄 "通道。对 TMEM175 基因敲除小鼠的研究进一步证实了这一发现,这些小鼠在极点攀爬和悬吊测试中表现出明显的运动功能障碍,同时黑质紧密区内的多巴胺神经元也明显减少。尽管取得了这些进展,但目前的研究状况并非没有争议。有鉴于此,本综述试图有条不紊地研究和整合有关 TMEM175 的大量最新文献。对 TMEM175 的结构和功能的透彻了解,加上对支持帕金森病多巴胺能神经元溶酶体功能障碍的复杂机制的深入了解,是势在必行的。这些知识对于精确定位干预目标至关重要,从而为可能改变帕金森病神经退行性病变轨迹的新型治疗策略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ageing Research Reviews
Ageing Research Reviews 医学-老年医学
CiteScore
19.80
自引率
2.30%
发文量
216
审稿时长
55 days
期刊介绍: With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends. ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research. The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.
期刊最新文献
Editorial Board Exercise-induced adaptive response of different immune organs during ageing Aging, brain plasticity, and motor learning Gut microbiome and Alzheimer’s disease: What we know and what remains to be explored Application of frailty screening instruments for older people in Sub-Saharan Africa: A scoping review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1