Juliane Maciel Henschel, Thiago Jardelino Dias, Vitória Stefany de Moura, Agnne Mayara de Oliveira Silva, Adriano Salviano Lopes, Daniel da Silva Gomes, Damiana Justino Araujo, João Batista Medeiros Silva, Oziel Nunes da Cruz, Diego Silva Batista
{"title":"Hydrogen peroxide and salt stress in radish: effects on growth, physiology, and root quality","authors":"Juliane Maciel Henschel, Thiago Jardelino Dias, Vitória Stefany de Moura, Agnne Mayara de Oliveira Silva, Adriano Salviano Lopes, Daniel da Silva Gomes, Damiana Justino Araujo, João Batista Medeiros Silva, Oziel Nunes da Cruz, Diego Silva Batista","doi":"10.1007/s12298-024-01476-z","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) plays a central role in responses to salt stress, a major abiotic stress that impacts crop yield worldwide. Despite the evidence that H<sub>2</sub>O<sub>2</sub> mitigates salt stress and improves post-harvest quality on several species, its effects on radish were not investigated so far. Thus, the objective of this study was to evaluate the exogenous application of H<sub>2</sub>O<sub>2</sub> on salt stress mitigation of radish growth, physiology, and post-harvest quality. For this, radish plants were grown in pots for 30 days, being watered with non-saline (0.31 dS m<sup>−1</sup>) or saline water (120 mM NaCl, 12.25 dS m<sup>−1</sup>). Plants were leaf-sprayed weekly with water (control – 0 µM H<sub>2</sub>O<sub>2</sub>) or H<sub>2</sub>O<sub>2</sub> (150 or 1500 µM) solutions. The experimental design was completely randomized in a 3 × 2 factorial scheme (H<sub>2</sub>O<sub>2</sub> treatments × salt stress conditions). The growth, physiology (gas exchanges, photochemical efficiency, relative water content, electrolyte leakage, and the contents of chlorophylls and carotenoids), and post-harvest attributes of globular roots (color, anthocyanins, vitamin C, phenolic compounds, and soluble solids) were determined. Salt stress decreased gas exchanges and increased electrolyte leakage, which resulted in stunted radish growth, and increased the contents of antioxidants, such as anthocyanins, soluble solids, and vitamin C, improving globular root quality. Conversely, H<sub>2</sub>O<sub>2</sub> did not mitigate salt stress effects on radish growth, photosynthetic capacity, and oxidative damages. Although H<sub>2</sub>O<sub>2</sub> increased vitamin C under non-stressed condition, it was decreased under salt stress. Thus, we conclude that H<sub>2</sub>O<sub>2</sub> did not mitigate salt stress on radish growth and quality.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01476-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen peroxide (H2O2) plays a central role in responses to salt stress, a major abiotic stress that impacts crop yield worldwide. Despite the evidence that H2O2 mitigates salt stress and improves post-harvest quality on several species, its effects on radish were not investigated so far. Thus, the objective of this study was to evaluate the exogenous application of H2O2 on salt stress mitigation of radish growth, physiology, and post-harvest quality. For this, radish plants were grown in pots for 30 days, being watered with non-saline (0.31 dS m−1) or saline water (120 mM NaCl, 12.25 dS m−1). Plants were leaf-sprayed weekly with water (control – 0 µM H2O2) or H2O2 (150 or 1500 µM) solutions. The experimental design was completely randomized in a 3 × 2 factorial scheme (H2O2 treatments × salt stress conditions). The growth, physiology (gas exchanges, photochemical efficiency, relative water content, electrolyte leakage, and the contents of chlorophylls and carotenoids), and post-harvest attributes of globular roots (color, anthocyanins, vitamin C, phenolic compounds, and soluble solids) were determined. Salt stress decreased gas exchanges and increased electrolyte leakage, which resulted in stunted radish growth, and increased the contents of antioxidants, such as anthocyanins, soluble solids, and vitamin C, improving globular root quality. Conversely, H2O2 did not mitigate salt stress effects on radish growth, photosynthetic capacity, and oxidative damages. Although H2O2 increased vitamin C under non-stressed condition, it was decreased under salt stress. Thus, we conclude that H2O2 did not mitigate salt stress on radish growth and quality.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.