Enhancing Penning Ion Source Performance Through Geometry Optimization

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-06-21 DOI:10.1007/s11090-024-10489-1
Mazhar Fathi, Ehsan Ebrahimibasabi, Seyyed Mostafa Sadati, Neda Fathi Amin
{"title":"Enhancing Penning Ion Source Performance Through Geometry Optimization","authors":"Mazhar Fathi, Ehsan Ebrahimibasabi, Seyyed Mostafa Sadati, Neda Fathi Amin","doi":"10.1007/s11090-024-10489-1","DOIUrl":null,"url":null,"abstract":"<p>This article presents a comprehensive investigation of the impact of cathode and anticathode geometries on the performance of a cold cathode Penning ion source. Both experimental and simulation-based approaches were employed to optimize plasma production and ion extraction. Specifically, the effects of cathode geometry on breakdown voltage and extraction current, as well as the effects of anticathode geometry on extraction current under different voltage and hydrogen gas pressure conditions, were studied for two cathode models and three anticathode models. The study also reported on the effects of setup conditions, including ignition and working pressure range, on the ion source performance during the experiment, which lasted for the first, third, and seventh days. The experimental results revealed that changes in cathode geometry under the same conditions led to a 160 V reduction in breakdown voltage and a four-fold increase in extraction current in the proposed design. Furthermore, altering the geometry of the anticathode resulted in an increase in extraction current of the ion source with the conical aperture anticathode, which exhibited greater efficiency compared to the cylindrical aperture anticathode. Overall, this study contributes to a deeper understanding of the relationship between electrode design and plasma properties in cold cathode Penning ion sources, and offers important insights for optimizing their performance and efficiency.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-024-10489-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a comprehensive investigation of the impact of cathode and anticathode geometries on the performance of a cold cathode Penning ion source. Both experimental and simulation-based approaches were employed to optimize plasma production and ion extraction. Specifically, the effects of cathode geometry on breakdown voltage and extraction current, as well as the effects of anticathode geometry on extraction current under different voltage and hydrogen gas pressure conditions, were studied for two cathode models and three anticathode models. The study also reported on the effects of setup conditions, including ignition and working pressure range, on the ion source performance during the experiment, which lasted for the first, third, and seventh days. The experimental results revealed that changes in cathode geometry under the same conditions led to a 160 V reduction in breakdown voltage and a four-fold increase in extraction current in the proposed design. Furthermore, altering the geometry of the anticathode resulted in an increase in extraction current of the ion source with the conical aperture anticathode, which exhibited greater efficiency compared to the cylindrical aperture anticathode. Overall, this study contributes to a deeper understanding of the relationship between electrode design and plasma properties in cold cathode Penning ion sources, and offers important insights for optimizing their performance and efficiency.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过几何优化提高潘宁离子源性能
本文全面研究了阴极和反阴极几何形状对冷阴极潘宁离子源性能的影响。采用了实验和模拟两种方法来优化等离子体的产生和离子萃取。具体来说,研究了两种阴极模型和三种反阴极模型在不同电压和氢气压力条件下,阴极几何形状对击穿电压和萃取电流的影响,以及反阴极几何形状对萃取电流的影响。研究还报告了点火和工作压力范围等设置条件对实验期间离子源性能的影响,实验持续了第一天、第三天和第七天。实验结果表明,在相同条件下,改变阴极的几何形状可使击穿电压降低 160 V,并使拟议设计中的萃取电流增加四倍。此外,改变反阴极的几何形状导致锥形孔径反阴极离子源的萃取电流增加,与圆柱形孔径反阴极相比,锥形孔径反阴极离子源的效率更高。总之,这项研究有助于加深对冷阴极潘宁离子源中电极设计与等离子特性之间关系的理解,并为优化其性能和效率提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water A Biphasic Plasma Microreactor for Pollutants Degradation in Water Ammonia Synthesis via Membrane Dielectric-Barrier Discharge Reactor Integrated with Metal Catalyst Enhancement of W Nanoparticles Synthesis by Injecting H2 in a Magnetron Sputtering Gas Aggregation Cluster Source Operated in Ar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1