{"title":"Knowledge graph construction for heart failure using large language models with prompt engineering","authors":"Tianhan Xu, Yixun Gu, Mantian Xue, Renjie Gu, Bin Li, Xiang Gu","doi":"10.3389/fncom.2024.1389475","DOIUrl":null,"url":null,"abstract":"IntroductionConstructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific annotation samples, are very limited. In addition, existing models do not perform well in recognizing out-of-distribution entities and relations that are not seen in the training phase.MethodIn this study, we present a novel and practical pipeline for constructing a heart failure knowledge graph using large language models and medical expert refinement. We apply prompt engineering to the three phases of schema design: schema design, information extraction, and knowledge completion. The best performance is achieved by designing task-specific prompt templates combined with the TwoStepChat approach.ResultsExperiments on two datasets show that the TwoStepChat method outperforms the Vanillia prompt and outperforms the fine-tuned BERT-based baselines. Moreover, our method saves 65% of the time compared to manual annotation and is better suited to extract the out-of-distribution information in the real world.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1389475","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionConstructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific annotation samples, are very limited. In addition, existing models do not perform well in recognizing out-of-distribution entities and relations that are not seen in the training phase.MethodIn this study, we present a novel and practical pipeline for constructing a heart failure knowledge graph using large language models and medical expert refinement. We apply prompt engineering to the three phases of schema design: schema design, information extraction, and knowledge completion. The best performance is achieved by designing task-specific prompt templates combined with the TwoStepChat approach.ResultsExperiments on two datasets show that the TwoStepChat method outperforms the Vanillia prompt and outperforms the fine-tuned BERT-based baselines. Moreover, our method saves 65% of the time compared to manual annotation and is better suited to extract the out-of-distribution information in the real world.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro