Lei Deng, Lingzhi Xie, Bo He, Yao Zhang, Jun Liu, Peng Zhao
{"title":"Anisotropic microscale failure mechanism of shale","authors":"Lei Deng, Lingzhi Xie, Bo He, Yao Zhang, Jun Liu, Peng Zhao","doi":"10.1007/s11440-024-02353-5","DOIUrl":null,"url":null,"abstract":"<div><p>As a hydrocarbon reservoir rock, shale is generally composed of highly compacted clay particles with submicrometer sizes and includes nanometric porosity and different hard particles, like quartz, pyrite, etc. One of the key reasons for the formation of a complex fracture network via hydraulic fracturing is the multiscale heterogeneity of shale, especially heterogeneity on the microscale. This paper conducted on an experimental investigation of shale and explored the intrinsic relationship between the microstructure, the related mechanical properties at the micrometer level and the anisotropic failure mechanism. Small-scale specimens with micrometer dimensions in the form of cantilever beams with rectangular cross-section were fabricated by means of a focused ion beam (FIB) and tested via bending with a nanoindenter. The load–deflection curves of these bending beams were monitored up to failure, and the tensile strength of the shale composite was directly derived from the load–deflection curves at 474.5 MPa (parallel to the bedding plane) and 168.9 MPa (vertical to the bedding plane). The results show that the strength anisotropy of shale at the micrometer scale is driven by the clay particles and other minerals, and the bonds of these particles. The modulus anisotropy of the shale composite at the microscale is dominated by the orientation of clay particles. Moreover, the shale composite embedded with pyrite exhibited strong softening characteristics.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7451 - 7471"},"PeriodicalIF":5.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02353-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a hydrocarbon reservoir rock, shale is generally composed of highly compacted clay particles with submicrometer sizes and includes nanometric porosity and different hard particles, like quartz, pyrite, etc. One of the key reasons for the formation of a complex fracture network via hydraulic fracturing is the multiscale heterogeneity of shale, especially heterogeneity on the microscale. This paper conducted on an experimental investigation of shale and explored the intrinsic relationship between the microstructure, the related mechanical properties at the micrometer level and the anisotropic failure mechanism. Small-scale specimens with micrometer dimensions in the form of cantilever beams with rectangular cross-section were fabricated by means of a focused ion beam (FIB) and tested via bending with a nanoindenter. The load–deflection curves of these bending beams were monitored up to failure, and the tensile strength of the shale composite was directly derived from the load–deflection curves at 474.5 MPa (parallel to the bedding plane) and 168.9 MPa (vertical to the bedding plane). The results show that the strength anisotropy of shale at the micrometer scale is driven by the clay particles and other minerals, and the bonds of these particles. The modulus anisotropy of the shale composite at the microscale is dominated by the orientation of clay particles. Moreover, the shale composite embedded with pyrite exhibited strong softening characteristics.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.