Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang
{"title":"Visual experimental investigation on the performance of grouted gravel pile during construction process in clay","authors":"Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang","doi":"10.1007/s11440-024-02423-8","DOIUrl":null,"url":null,"abstract":"<div><p>The grouted gravel pile is a new method of pile foundation, which has been widely used in engineering fields in recent years. However, the grout diffusion characteristics and full-field displacement response of soil during grouting have not been fully revealed and systematically studied in previous publications. This paper employed a transparent soil model test system to explore the effects of the grouting pressure (GP), soil pre-consolidation pressure (SPCP), and initial viscosity of grout (GIV) on the grouting performances and load-bearing characteristics of grouted gravel piles. The development laws of the grouting duration, displacement field of the soil, and ultimate load-bearing capacity of the pile were analyzed. The results show that the total grouting duration decreases with a higher GP, increases with the increasing GIV, initially increases and then decreases as SPCP increases. Both the range of horizontal and vertical displacements of the soil around the pile and the distribution of vertical displacements of the soil at the pile end were obviously enlarged with GP as well as with GIV. However, with the increasing SPCP, they showed a decreasing tendency. The vertical ultimate load-bearing capacity of the grouted gravel pile increases with GP, SPCP, and GIV to varying degrees. The findings of this study contribute to the understanding of the pile-soil interaction during grouting process of the grouted gravel pile, which may improve the design of construction parameters.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7369 - 7387"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02423-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The grouted gravel pile is a new method of pile foundation, which has been widely used in engineering fields in recent years. However, the grout diffusion characteristics and full-field displacement response of soil during grouting have not been fully revealed and systematically studied in previous publications. This paper employed a transparent soil model test system to explore the effects of the grouting pressure (GP), soil pre-consolidation pressure (SPCP), and initial viscosity of grout (GIV) on the grouting performances and load-bearing characteristics of grouted gravel piles. The development laws of the grouting duration, displacement field of the soil, and ultimate load-bearing capacity of the pile were analyzed. The results show that the total grouting duration decreases with a higher GP, increases with the increasing GIV, initially increases and then decreases as SPCP increases. Both the range of horizontal and vertical displacements of the soil around the pile and the distribution of vertical displacements of the soil at the pile end were obviously enlarged with GP as well as with GIV. However, with the increasing SPCP, they showed a decreasing tendency. The vertical ultimate load-bearing capacity of the grouted gravel pile increases with GP, SPCP, and GIV to varying degrees. The findings of this study contribute to the understanding of the pile-soil interaction during grouting process of the grouted gravel pile, which may improve the design of construction parameters.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.