Enhancing virtual machine placement efficiency in cloud data centers: a hybrid approach using multi-objective reinforcement learning and clustering strategies

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-07-02 DOI:10.1007/s00607-024-01311-z
Arezoo Ghasemi, Abolfazl Toroghi Haghighat, Amin Keshavarzi
{"title":"Enhancing virtual machine placement efficiency in cloud data centers: a hybrid approach using multi-objective reinforcement learning and clustering strategies","authors":"Arezoo Ghasemi, Abolfazl Toroghi Haghighat, Amin Keshavarzi","doi":"10.1007/s00607-024-01311-z","DOIUrl":null,"url":null,"abstract":"<p>Deploying virtual machines poses a significant challenge for cloud data centers, requiring careful consideration of various objectives such as minimizing energy consumption, resource wastage, ensuring load balancing, and meeting service level agreements. While researchers have explored multi-objective methods to tackle virtual machine placement, evaluating potential solutions remains complex in such scenarios. In this paper, we introduce two novel multi-objective algorithms tailored to address this challenge. The VMPMFuzzyORL method employs reinforcement learning for virtual machine placement, with candidate solutions assessed using a fuzzy system. While practical, incorporating fuzzy systems introduces notable runtime overhead. To mitigate this, we propose MRRL, an alternative approach involving initial virtual machine clustering using the k-means algorithm, followed by optimized placement utilizing a customized reinforcement learning strategy with multiple reward signals. Extensive simulations highlight the significant advantages of these approaches over existing techniques, particularly energy efficiency, resource utilization, load balancing, and overall execution time.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"2 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01311-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deploying virtual machines poses a significant challenge for cloud data centers, requiring careful consideration of various objectives such as minimizing energy consumption, resource wastage, ensuring load balancing, and meeting service level agreements. While researchers have explored multi-objective methods to tackle virtual machine placement, evaluating potential solutions remains complex in such scenarios. In this paper, we introduce two novel multi-objective algorithms tailored to address this challenge. The VMPMFuzzyORL method employs reinforcement learning for virtual machine placement, with candidate solutions assessed using a fuzzy system. While practical, incorporating fuzzy systems introduces notable runtime overhead. To mitigate this, we propose MRRL, an alternative approach involving initial virtual machine clustering using the k-means algorithm, followed by optimized placement utilizing a customized reinforcement learning strategy with multiple reward signals. Extensive simulations highlight the significant advantages of these approaches over existing techniques, particularly energy efficiency, resource utilization, load balancing, and overall execution time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高云数据中心的虚拟机放置效率:使用多目标强化学习和聚类策略的混合方法
部署虚拟机是云数据中心面临的一项重大挑战,需要仔细考虑各种目标,如尽量减少能耗、资源浪费、确保负载平衡和满足服务水平协议。虽然研究人员已经探索了解决虚拟机部署问题的多目标方法,但在这种情况下,评估潜在的解决方案仍然很复杂。在本文中,我们介绍了两种为应对这一挑战而量身定制的新型多目标算法。VMPMFuzzyORL 方法采用强化学习来处理虚拟机放置问题,并使用模糊系统来评估候选解决方案。模糊系统虽然实用,但会带来显著的运行时开销。为了缓解这一问题,我们提出了 MRRL,这是一种替代方法,涉及使用 k-means 算法对虚拟机进行初始聚类,然后利用具有多重奖励信号的定制强化学习策略优化放置。大量的仿真突出显示了这些方法相对于现有技术的显著优势,特别是能源效率、资源利用率、负载平衡和整体执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1