{"title":"Reconstructing 3D Biomedical Architectural Order at Multiple Spatial Scales with Multimodal Stack Input","authors":"Chaojing Shi, Guocheng Sun, Kaitai Han, Mengyuan Huang, Wu Liu, Xi Liu, Zijun Wang, Qianjin Guo","doi":"10.1007/s42235-024-00557-9","DOIUrl":null,"url":null,"abstract":"<div><p>Microscopy, crucial for exploring biological structures, often uses polarizing microscopes to observe tissue anisotropy and reconstruct label-free images. However, these images typically show low contrast, and while fluorescence imaging offers higher contrast, it is phototoxic and can disrupt natural assembly dynamics. This study focuses on reconstructing fluorescence images from label-free ones using a complex nonlinear transformation, specifically aiming to identify organelles within diverse optical properties of tissues. A multimodal deep learning model, 3DTransMDL, was developed, employing the Stokes vector to analyze the sample’s retardance, phase, and orientation. This model incorporates isotropy and anisotropy to differentiate organelles, enhancing the input with structures' varied optical properties. Additionally, techniques like background distortion normalization and covariate shift methods were applied to reduce noise and overfitting, improving model generalization. The approach was tested on mouse kidney and human brain tissues, successfully identifying specific organelles and demonstrating superior performance in reconstructing 3D images, significantly reducing artifacts compared to 2D predictions. Evaluation metrics such as SSIM, PCC, and R2 score confirm the model's efficacy, with improvements observed in multi-modality input setups. This advancement suggests potential applications in molecular dynamics, aiming for further enhancements in future studies.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2587 - 2601"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00557-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microscopy, crucial for exploring biological structures, often uses polarizing microscopes to observe tissue anisotropy and reconstruct label-free images. However, these images typically show low contrast, and while fluorescence imaging offers higher contrast, it is phototoxic and can disrupt natural assembly dynamics. This study focuses on reconstructing fluorescence images from label-free ones using a complex nonlinear transformation, specifically aiming to identify organelles within diverse optical properties of tissues. A multimodal deep learning model, 3DTransMDL, was developed, employing the Stokes vector to analyze the sample’s retardance, phase, and orientation. This model incorporates isotropy and anisotropy to differentiate organelles, enhancing the input with structures' varied optical properties. Additionally, techniques like background distortion normalization and covariate shift methods were applied to reduce noise and overfitting, improving model generalization. The approach was tested on mouse kidney and human brain tissues, successfully identifying specific organelles and demonstrating superior performance in reconstructing 3D images, significantly reducing artifacts compared to 2D predictions. Evaluation metrics such as SSIM, PCC, and R2 score confirm the model's efficacy, with improvements observed in multi-modality input setups. This advancement suggests potential applications in molecular dynamics, aiming for further enhancements in future studies.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.