Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-09-01 DOI:10.1016/j.eng.2024.04.009
{"title":"Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine","authors":"","doi":"10.1016/j.eng.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a systems theory-driven framework to integration artificial intelligence (AI) into traditional Chinese medicine (TCM) research, enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles. Utilizing the System Function Decoding Model (SFDM), the research progresses through define, quantify, infer, and validate phases to systematically explore TCM’s material basis. It employs a dual analytical approach that combines top-down, systems theory-guided perspectives with bottom-up, elements–structure–function methodologies, provides comprehensive insights into TCM’s holistic material basis. Moreover, the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components, proposing two specific AI-driven technical applications. This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"40 ","pages":"Pages 28-50"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924002406/pdfft?md5=e0cf3694212db4e97ff90194509cc9c6&pid=1-s2.0-S2095809924002406-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002406","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a systems theory-driven framework to integration artificial intelligence (AI) into traditional Chinese medicine (TCM) research, enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles. Utilizing the System Function Decoding Model (SFDM), the research progresses through define, quantify, infer, and validate phases to systematically explore TCM’s material basis. It employs a dual analytical approach that combines top-down, systems theory-guided perspectives with bottom-up, elements–structure–function methodologies, provides comprehensive insights into TCM’s holistic material basis. Moreover, the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components, proposing two specific AI-driven technical applications. This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统论驱动的人工智能融入中医整体物质基础研究的框架
本文介绍了一个系统理论驱动的框架,将人工智能(AI)融入传统中医药研究,在坚持循证原则的同时,加强对中医药整体物质基础的理解。该研究利用系统功能解码模型(SFDM),通过定义、量化、推断和验证等阶段,系统地探索中医药的物质基础。研究采用双重分析方法,将自上而下的系统理论指导视角与自下而上的元素-结构-功能方法相结合,全面揭示了中药的整体物质基础。此外,研究还探讨了人工智能在中药材料成分的定量评估和预测分析中的作用,提出了两个具体的人工智能驱动的技术应用。这项跨学科研究强调了人工智能在提高我们对中药整体物质基础的认识方面的潜力,并为未来在传统智慧与现代技术交叉领域的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Procyanidin C1 Modulates the Microbiome to Increase FOXO1 Signaling and Valeric Acid Levels to Protect the Mucosal Barrier in Inflammatory Bowel Disease The Future Landscape and Framework of Precision Nutrition Enhancing the Efficiency of Enterprise Shutdowns for Environmental Protection: An Agent-Based Modeling Approach with High Spatial–Temporal Resolution Data Unveiling the Oldest Industrial Shale Gas Reservoir: Insights for the Enrichment Pattern and Exploration Direction of Lower Cambrian Shale Gas in the Sichuan Basin Revealing High-Efficiency Natural Mycotoxin Antidotes in Zebrafish Model Screening Against Zearalenone-Induced Toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1