Optimizing Sparse Mean-Reverting Portfolio

Sung Min Yoon
{"title":"Optimizing Sparse Mean-Reverting Portfolio","authors":"Sung Min Yoon","doi":"arxiv-2406.17155","DOIUrl":null,"url":null,"abstract":"Mean-reverting behavior of individuals assets is widely known in financial\nmarkets. In fact, we can construct a portfolio that has mean-reverting behavior\nand use it in trading strategies to extract profits. In this paper, we show\nthat we are able to find the optimal weights of stocks to construct portfolio\nthat has the fastest mean-reverting behavior. We further add minimum variance\nand sparsity constraints to the optimization problem and transform into\nSemidefinite Programming (SDP) problem to find the optimal weights. Using the\noptimal weights, we empirically compare the performance of contrarian\nstrategies between non-sparse mean-reverting portfolio and sparse\nmean-reverting portfolio to argue that the latter provides higher returns when\nwe take into account of transaction costs.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mean-reverting behavior of individuals assets is widely known in financial markets. In fact, we can construct a portfolio that has mean-reverting behavior and use it in trading strategies to extract profits. In this paper, we show that we are able to find the optimal weights of stocks to construct portfolio that has the fastest mean-reverting behavior. We further add minimum variance and sparsity constraints to the optimization problem and transform into Semidefinite Programming (SDP) problem to find the optimal weights. Using the optimal weights, we empirically compare the performance of contrarian strategies between non-sparse mean-reverting portfolio and sparse mean-reverting portfolio to argue that the latter provides higher returns when we take into account of transaction costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化稀疏均值回复组合
个人资产的均值回复行为在金融市场中广为人知。事实上,我们可以构建具有均值回复行为的投资组合,并将其用于交易策略以获取利润。本文表明,我们能够找到最优的股票权重,从而构建出具有最快均值回复行为的投资组合。我们进一步在优化问题中添加了最小方差和稀疏性约束,并将其转化为半有限编程(SDP)问题,从而找到最优权重。利用最优权重,我们对非稀疏均值回复投资组合和稀疏均值回复投资组合的逆向策略表现进行了实证比较,结果表明,当我们考虑到交易成本时,后者能提供更高的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Investment with Costly Expert Opinions Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization Disentangling the sources of cyber risk premia A Deep Reinforcement Learning Framework For Financial Portfolio Management Betting Against (Bad) Beta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1