Unlearning regularization for Boltzmann machines

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-06-26 DOI:10.1088/2632-2153/ad5a5f
Enrico Ventura, Simona Cocco, Rémi Monasson and Francesco Zamponi
{"title":"Unlearning regularization for Boltzmann machines","authors":"Enrico Ventura, Simona Cocco, Rémi Monasson and Francesco Zamponi","doi":"10.1088/2632-2153/ad5a5f","DOIUrl":null,"url":null,"abstract":"Boltzmann machines (BMs) are graphical models with interconnected binary units, employed for the unsupervised modeling of data distributions. When trained on real data, BMs show the tendency to behave like critical systems, displaying a high susceptibility of the model under a small rescaling of the inferred parameters. This behavior is not convenient for the purpose of generating data, because it slows down the sampling process, and induces the model to overfit the training-data. In this study, we introduce a regularization method for BMs to improve the robustness of the model under rescaling of the parameters. The new technique shares formal similarities with the unlearning algorithm, an iterative procedure used to improve memory associativity in Hopfield-like neural networks. We test our unlearning regularization on synthetic data generated by two simple models, the Curie–Weiss ferromagnetic model and the Sherrington–Kirkpatrick spin glass model. We show that it outperforms Lp-norm schemes and discuss the role of parameter initialization. Eventually, the method is applied to learn the activity of real neuronal cells, confirming its efficacy at shifting the inferred model away from criticality and coming out as a powerful candidate for actual scientific implementations.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad5a5f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Boltzmann machines (BMs) are graphical models with interconnected binary units, employed for the unsupervised modeling of data distributions. When trained on real data, BMs show the tendency to behave like critical systems, displaying a high susceptibility of the model under a small rescaling of the inferred parameters. This behavior is not convenient for the purpose of generating data, because it slows down the sampling process, and induces the model to overfit the training-data. In this study, we introduce a regularization method for BMs to improve the robustness of the model under rescaling of the parameters. The new technique shares formal similarities with the unlearning algorithm, an iterative procedure used to improve memory associativity in Hopfield-like neural networks. We test our unlearning regularization on synthetic data generated by two simple models, the Curie–Weiss ferromagnetic model and the Sherrington–Kirkpatrick spin glass model. We show that it outperforms Lp-norm schemes and discuss the role of parameter initialization. Eventually, the method is applied to learn the activity of real neuronal cells, confirming its efficacy at shifting the inferred model away from criticality and coming out as a powerful candidate for actual scientific implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为波尔兹曼机解除学习正则化
玻尔兹曼机(BMs)是一种具有相互连接的二进制单元的图形模型,用于对数据分布进行无监督建模。在真实数据上进行训练时,玻尔兹曼机表现出临界系统的倾向,在推断参数的微小重缩放下显示出模型的高度易感性。这种行为不利于生成数据,因为它会减慢采样过程,并导致模型过度拟合训练数据。在本研究中,我们为 BMs 引入了一种正则化方法,以提高模型在参数重新缩放情况下的鲁棒性。这种新技术在形式上与 "un-learning 算法 "有相似之处,后者是一种迭代过程,用于改善霍普菲尔德类神经网络的记忆关联性。我们在居里-魏斯铁磁模型和谢林顿-柯克帕特里克自旋玻璃模型这两个简单模型生成的合成数据上测试了我们的非学习正则化。结果表明,它优于 Lp 正则方案,并讨论了参数初始化的作用。最后,我们将该方法应用于学习真实神经细胞的活动,证实了它能有效地将推断出的模型从临界状态中转移出来,成为实际科学实施的有力候选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1