Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-05 DOI:10.1002/adma.202408287
Guoqiang Ma, Wentao Yuan, Xiaotong Li, Tongqiang Bi, Linhuan Niu, Yue Wang, Mengyu Liu, Yuanyuan Wang, Zhaoxi Shen, Ning Zhang
{"title":"Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries.","authors":"Guoqiang Ma, Wentao Yuan, Xiaotong Li, Tongqiang Bi, Linhuan Niu, Yue Wang, Mengyu Liu, Yuanyuan Wang, Zhaoxi Shen, Ning Zhang","doi":"10.1002/adma.202408287","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim<sup>+</sup>) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim<sup>+</sup> featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H<sub>2</sub> evolution to enable the compact electrodeposition. In addition, the formulated Bmim<sup>+</sup>-containing ZnSO<sub>4</sub> electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim<sup>+</sup>-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm<sup>-2</sup> with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim<sup>+</sup>-free electrolytes.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202408287","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深循环锌水电池的有机阳离子质地锌金属阳极。
操纵锌(Zn)金属的结晶取向以暴露更多 (002) 平面有望在水性电解质中稳定锌阳极。然而,在非外延电沉积高(002)纹理锌金属以及在深度循环条件下保持(002)纹理方面仍然存在挑战。在此,我们开发了一种新型有机咪唑阳离子辅助的非外延电沉积策略,用于电沉积锌金属的纹理。以 1-丁基-3-甲基咪唑阳离子(Bmim+)为示例添加剂,制备的 Zn 薄膜((002)-Zn)结构紧凑,具有高度(002)纹理,不含(100)信号。机理研究发现,Bmim+ 在 Zn-(002)面上的定向吸附特性可降低(002)面的生长速度,使最终呈现(002)纹理,并使 Zn 成核均匀化,抑制 H2 的演化,从而实现紧凑的电沉积。此外,即使在深度循环条件下,所配制的含 Bmim+ 的 ZnSO4 电解液也能有效地维持(002)纹理。因此,(002)纹理和含 Bmim+ 电解质的结合使(002)-Zn 电极在 20 mAh cm-2 和 72.6% 放电深度条件下具有 350 小时以上的超强循环稳定性,并确保了硬币型和袋装型全 Zn 电池的稳定运行,其性能明显优于不含 Bmim+ 电解质的(002)-Zn 电池和商用 Zn 电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Nanometer Control of Ruddlesden-Popper Interlayers by Thermal Evaporation for Efficient Perovskite Photovoltaics. Optical Control of Adaptive Nanoscale Domain Networks. Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly. Balancing Pd-H Interactions: Thiolate-Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing. Fusing Science with Industry: Perovskite Photovoltaics Moving Rapidly into Industrialization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1