Nanometer Control of Ruddlesden-Popper Interlayers by Thermal Evaporation for Efficient Perovskite Photovoltaics.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-10 DOI:10.1002/adma.202404795
Kunal Datta, Sanggyun Kim, Ruipeng Li, Diana K LaFollette, Jingwei Yang, Carlo A R Perini, Juan-Pablo Correa-Baena
{"title":"Nanometer Control of Ruddlesden-Popper Interlayers by Thermal Evaporation for Efficient Perovskite Photovoltaics.","authors":"Kunal Datta, Sanggyun Kim, Ruipeng Li, Diana K LaFollette, Jingwei Yang, Carlo A R Perini, Juan-Pablo Correa-Baena","doi":"10.1002/adma.202404795","DOIUrl":null,"url":null,"abstract":"<p><p>Solution-processed Ruddlesden-Popper (RP) interlayers in lead halide perovskite solar cells (PSCs) present processing challenges due to fast film formation and uncontrolled growth of phases and layer thickness at interfaces. In this work, an alternative, solvent-free, thermal co-evaporation process is developed to deposit RP interlayers. The method provides precise control on interlayer thickness and enables understanding its role on charge-carrier extraction. Studying RP film growth reveals the development of heterointerfaces when deposited on three-dimensional (3D) perovskite layers. This allows a large thickness window with an optimum between 20 nm and 40 nm to improve the optoelectronic properties of the underlying 3D perovskite. Solar cells using evaporated interlayers achieve power conversion efficiency of 21.6%, compared to 19.6% for untreated devices, driven by improvements in the open-circuit voltage and fill factor. This work sheds light on the importance of phase and thickness control of passivation layers, which ultimately determine the solar cell performance in state-of-the-art PSCs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202404795","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solution-processed Ruddlesden-Popper (RP) interlayers in lead halide perovskite solar cells (PSCs) present processing challenges due to fast film formation and uncontrolled growth of phases and layer thickness at interfaces. In this work, an alternative, solvent-free, thermal co-evaporation process is developed to deposit RP interlayers. The method provides precise control on interlayer thickness and enables understanding its role on charge-carrier extraction. Studying RP film growth reveals the development of heterointerfaces when deposited on three-dimensional (3D) perovskite layers. This allows a large thickness window with an optimum between 20 nm and 40 nm to improve the optoelectronic properties of the underlying 3D perovskite. Solar cells using evaporated interlayers achieve power conversion efficiency of 21.6%, compared to 19.6% for untreated devices, driven by improvements in the open-circuit voltage and fill factor. This work sheds light on the importance of phase and thickness control of passivation layers, which ultimately determine the solar cell performance in state-of-the-art PSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热蒸发实现 Ruddlesden-Popper 夹层的纳米控制,从而实现高效的 Perovskite 光伏技术。
卤化铅过氧化物太阳能电池(PSCs)中的溶液法 Ruddlesden-Popper (RP) 夹层由于成膜速度快、界面处的相生长和层厚度不可控而给加工带来了挑战。在这项工作中,开发了一种无溶剂、热共蒸发的替代工艺来沉积 RP 中间膜。该方法能精确控制层间厚度,并能了解其对电荷载体萃取的作用。对 RP 薄膜生长的研究表明,在三维(3D)过氧化物层上沉积时,会形成异质界面。这使得厚度窗口较大,最佳厚度在 20 纳米到 40 纳米之间,从而改善了底层三维包晶的光电特性。由于开路电压和填充因子的改善,使用蒸发夹层的太阳能电池的功率转换效率达到 21.6%,而未经处理的设备则为 19.6%。这项研究揭示了钝化层的相位和厚度控制的重要性,它们最终决定了最先进的 PSC 太阳能电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
On-Demand Crack Formation on DNA Film via Organic Solvent-Induced Dehydration. Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates. Realization of Fine-Tuning the Lattice Thermal Conductivity and Anharmonicity in Layered Semiconductors via Entropy Engineering. Interfacially Enhanced Superconductivity in Fe(Te,Se)/Bi4Te3 Heterostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1