Electron-Delocalization Across High Surface Entropy Sub-1 nm Nanobelts Toward Enhanced Electrocatalytic Urea Oxidation.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-05 DOI:10.1002/smll.202404595
Xijun Cheng, Siyang Nie, Yuan Huang, Qingda Liu, Liang Wu, Xun Wang
{"title":"Electron-Delocalization Across High Surface Entropy Sub-1 nm Nanobelts Toward Enhanced Electrocatalytic Urea Oxidation.","authors":"Xijun Cheng, Siyang Nie, Yuan Huang, Qingda Liu, Liang Wu, Xun Wang","doi":"10.1002/smll.202404595","DOIUrl":null,"url":null,"abstract":"<p><p>Integration of inherently incompatible elements into a single sublattice, resulting in the formation of monophasic metal oxide, holds great scientific promise; it unveils that the overlooked surface entropy in subnanometer materials can thermodynamically facilitate the formation of homogeneous single-phase structures. Here a facile approach is proposed for synthesizing multimetallic oxide subnanometer nanobelts (MMO-PMA SNBs) by harnessing the potential of phosphomolybdic acid (PMA) clusters to capture inorganic nuclei and inhibiting their subsequent growth in solvothermal reactions. Experimental and theoretical analyses show that PMA in MMO-PMA SNBs not only aids subnanometer structure formation but also induces in situ modifications to catalytic sites. The electron transfer from PMA, coupled with the loss of elemental identity of transition metals, leads to electron delocalization, jointly activating the reaction sites. The unique structure makes pentametallic oxide (PMO-PMA SNBs) achieve a current density of 10 mA cm<sup>-2</sup> at a low potential of 1.34 V and remain stable for 24 h at 10 mA cm<sup>-2</sup> on urea oxidation reaction (UOR). The exceptional UOR catalytic activity suggests a potential for utilizing multimetallic subnanometer nanostructures in energy conversion and environmental remediation.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404595","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of inherently incompatible elements into a single sublattice, resulting in the formation of monophasic metal oxide, holds great scientific promise; it unveils that the overlooked surface entropy in subnanometer materials can thermodynamically facilitate the formation of homogeneous single-phase structures. Here a facile approach is proposed for synthesizing multimetallic oxide subnanometer nanobelts (MMO-PMA SNBs) by harnessing the potential of phosphomolybdic acid (PMA) clusters to capture inorganic nuclei and inhibiting their subsequent growth in solvothermal reactions. Experimental and theoretical analyses show that PMA in MMO-PMA SNBs not only aids subnanometer structure formation but also induces in situ modifications to catalytic sites. The electron transfer from PMA, coupled with the loss of elemental identity of transition metals, leads to electron delocalization, jointly activating the reaction sites. The unique structure makes pentametallic oxide (PMO-PMA SNBs) achieve a current density of 10 mA cm-2 at a low potential of 1.34 V and remain stable for 24 h at 10 mA cm-2 on urea oxidation reaction (UOR). The exceptional UOR catalytic activity suggests a potential for utilizing multimetallic subnanometer nanostructures in energy conversion and environmental remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高表面熵 1 纳米以下纳米颗粒上的电子定位,促进电催化尿素氧化。
将本质上不相容的元素整合到一个单一的亚晶格中,形成单相金属氧化物,具有巨大的科学前景;它揭示了亚纳米材料中被忽视的表面熵可以在热力学上促进均匀单相结构的形成。本文提出了一种简便的方法,通过利用磷钼酸(PMA)团簇捕获无机核的潜力,抑制它们在溶热反应中的后续生长,从而合成多金属氧化物亚纳米颗粒(MMO-PMA SNBs)。实验和理论分析表明,MMO-PMA SNB 中的 PMA 不仅有助于亚纳米结构的形成,还能诱导催化位点的原位修饰。PMA 的电子转移以及过渡金属元素特性的丧失导致了电子析出,从而共同激活了反应位点。这种独特的结构使得五金属氧化物(PMO-PMA SNBs)在 1.34 V 的低电位下电流密度达到 10 mA cm-2,并在 10 mA cm-2 的尿素氧化反应(UOR)中保持稳定 24 小时。卓越的尿素氧化反应催化活性表明,多金属亚纳米结构在能源转换和环境修复方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Insight into Fluoride Additives to Enhance Ammonia Production from Lithium-Mediated Electrochemical Nitrogen Reduction Reaction. Molecular Orientation Regulation of Hole Transport Semicrystalline-Polymer Enables High-Performance Carbon-Electrode Perovskite Solar Cells. Multifunctional Wearable Electronic Based on Fabric Modified by PPy/NiCoAl-LDH for Energy Storage, Electromagnetic Interference Shielding, and Photothermal Conversion. Pre-Intercalation of TMA Cations in MoS2 Interlayers for Fast and Stable Zinc Ion Storage. Pseudohalide-Based Ionic Liquids: Advancing Crystallization Kinetics and Optoelectronic Properties in All-Inorganic Perovskite Solar Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1