Structural and molecular dynamics simulation studies of CBL-interacting protein kinase CIPK and its complexes related to plant salinity stress.

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2024-07-05 DOI:10.1007/s00894-024-06037-5
Prabir Kumar Das, Tanya Bhatnagar, Sanhita Banik, Sambit Majumdar, Debajyoti Dutta
{"title":"Structural and molecular dynamics simulation studies of CBL-interacting protein kinase CIPK and its complexes related to plant salinity stress.","authors":"Prabir Kumar Das, Tanya Bhatnagar, Sanhita Banik, Sambit Majumdar, Debajyoti Dutta","doi":"10.1007/s00894-024-06037-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Calcium-dependent signaling in plants is responsible for several major cellular events, including the activation of the salinity-responsive pathways. Calcium binds to calcineurin B-like protein (CBL), and the resulting CBL-Ca<sup>2+</sup> complex binds to CBL-interacting protein kinase (CIPK). The CBL-CIPK complex enhances the CIPK interaction with an upstream kinase. The upstream kinase phosphorylates CIPK that, in turn, phosphorylates membrane transporters. Phosphorylation influences transporter activity to kick-start many downstream functions, such as balancing the cytosolic Na<sup>+</sup>-to-K<sup>+</sup> ratio. The CBL-CIPK interaction is pivotal for Ca<sup>2+</sup>-dependent salinity stress signaling.</p><p><strong>Methods: </strong>Computational methods are used to model the entire Arabidopsis thaliana CIPK24 protein structure in its autoinhibited and open-activated states. Arabidopsis thaliana CIPK24-CBL4 complex is predicted based on the protein-protein docking methods. The available structural and functional data support the CIPK24 and the CIPK24-CBL4 complex models. Models are energy-minimized and subjected to molecular dynamics (MD) simulations. MD simulations for 500 ns and 300 ns enabled us to predict the importance of conserved residues of the proteins. Finally, the work is extended to predict the CIPK24-CBL4 complex with the upstream kinase GRIK2. MD simulation for 300 ns on the ternary complex structure enabled us to identify the critical CIPK24-GRIK2 interactions. Together, these data could be used to engineer the CBL-CIPK interaction network for developing salt tolerance in crops.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-024-06037-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context: Calcium-dependent signaling in plants is responsible for several major cellular events, including the activation of the salinity-responsive pathways. Calcium binds to calcineurin B-like protein (CBL), and the resulting CBL-Ca2+ complex binds to CBL-interacting protein kinase (CIPK). The CBL-CIPK complex enhances the CIPK interaction with an upstream kinase. The upstream kinase phosphorylates CIPK that, in turn, phosphorylates membrane transporters. Phosphorylation influences transporter activity to kick-start many downstream functions, such as balancing the cytosolic Na+-to-K+ ratio. The CBL-CIPK interaction is pivotal for Ca2+-dependent salinity stress signaling.

Methods: Computational methods are used to model the entire Arabidopsis thaliana CIPK24 protein structure in its autoinhibited and open-activated states. Arabidopsis thaliana CIPK24-CBL4 complex is predicted based on the protein-protein docking methods. The available structural and functional data support the CIPK24 and the CIPK24-CBL4 complex models. Models are energy-minimized and subjected to molecular dynamics (MD) simulations. MD simulations for 500 ns and 300 ns enabled us to predict the importance of conserved residues of the proteins. Finally, the work is extended to predict the CIPK24-CBL4 complex with the upstream kinase GRIK2. MD simulation for 300 ns on the ternary complex structure enabled us to identify the critical CIPK24-GRIK2 interactions. Together, these data could be used to engineer the CBL-CIPK interaction network for developing salt tolerance in crops.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBL相互作用蛋白激酶CIPK及其复合物与植物盐分胁迫相关的结构和分子动力学模拟研究
背景:植物中依赖钙离子的信号转导是多种主要细胞事件的罪魁祸首,其中包括盐度反应途径的激活。钙与钙调素 B 样蛋白(CBL)结合,由此产生的 CBL-Ca2+ 复合物与 CBL 交互蛋白激酶(CIPK)结合。CBL-CIPK 复合物增强了 CIPK 与上游激酶的相互作用。上游激酶使 CIPK 磷酸化,而 CIPK 又使膜转运体磷酸化。磷酸化会影响转运体的活性,从而启动许多下游功能,如平衡细胞膜 Na+ 与 K+ 的比率。CBL-CIPK 相互作用是 Ca2+ 依赖性盐度胁迫信号转导的关键:方法:利用计算方法模拟拟南芥 CIPK24 蛋白在自抑制和开放激活状态下的整体结构。根据蛋白质-蛋白质对接方法预测了拟南芥 CIPK24-CBL4 复合物。现有的结构和功能数据支持 CIPK24 和 CIPK24-CBL4 复合物模型。对模型进行了能量最小化和分子动力学(MD)模拟。500 ns 和 300 ns 的 MD 模拟使我们能够预测蛋白质保守残基的重要性。最后,这项工作扩展到预测 CIPK24-CBL4 与上游激酶 GRIK2 的复合物。通过对三元复合物结构进行 300 ns 的 MD 模拟,我们确定了 CIPK24-GRIK2 的关键相互作用。这些数据可用于设计 CBL-CIPK 相互作用网络,以开发作物的耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Non-covalent interactions and charge transfer in the CO 2 activation by low-valent group 14 complexes. A DFT study of the effect of hydrostatic pressure on the structure and electronic properties of sarcosine crystal. Design of N-doped C60-σ-B-doped C60 photodetector based on resonant tunneling diode using DFT and NEGF method. How to search for and reveal a hidden intermediate? The ELF topological description of non-synchronicity in double proton transfer reactions under oriented external electric field. Unimolecular isomerizations of C6H6•+ radical cations: a computational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1