{"title":"Method for quantifying free hemoglobin, distinct from the hemoglobin-haptoglobin complex, in human serum","authors":"","doi":"10.1016/j.ab.2024.115601","DOIUrl":null,"url":null,"abstract":"<div><p>The measurement of free hemoglobin (free Hb) in blood is crucial for assessing the risk of organ damage in patients with hemolytic diseases. However, the colorimetric method, commonly used in clinical practice, does not distinguish between free Hb and the hemoglobin-haptoglobin complex (Hb-Hp) in the blood, instead reflecting the total Hb level. Although size-exclusion high-performance liquid chromatography (SEC-HPLC) can specifically measure free Hb, its clinical use is limited by long assay times. Here, we developed a novel assay method for the rapid quantification of free Hb in serum, distinguishing it from Hb-Hp, using a latex agglutination immunoturbidimetric assay (LATIA). This method could be used to measure free Hb in sera in the range of 1–100 μg/mL in approximately 15 min using an automatic biochemistry analyzer. Using Hb-spiked serum samples from healthy adults, there was a high correlation with Hb levels determined using the newly developed method and SEC-HPLC, indicating a high specificity for free Hb. This novel assay can be used to monitor levels of free Hb in patients with various hemolytic diseases and to design therapeutic strategies based on measured values. However, further studies are required to assess its clinical performance.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"694 ","pages":"Article 115601"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003269724001453/pdfft?md5=3b9e547a6e9b572079f717b830f81c51&pid=1-s2.0-S0003269724001453-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001453","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement of free hemoglobin (free Hb) in blood is crucial for assessing the risk of organ damage in patients with hemolytic diseases. However, the colorimetric method, commonly used in clinical practice, does not distinguish between free Hb and the hemoglobin-haptoglobin complex (Hb-Hp) in the blood, instead reflecting the total Hb level. Although size-exclusion high-performance liquid chromatography (SEC-HPLC) can specifically measure free Hb, its clinical use is limited by long assay times. Here, we developed a novel assay method for the rapid quantification of free Hb in serum, distinguishing it from Hb-Hp, using a latex agglutination immunoturbidimetric assay (LATIA). This method could be used to measure free Hb in sera in the range of 1–100 μg/mL in approximately 15 min using an automatic biochemistry analyzer. Using Hb-spiked serum samples from healthy adults, there was a high correlation with Hb levels determined using the newly developed method and SEC-HPLC, indicating a high specificity for free Hb. This novel assay can be used to monitor levels of free Hb in patients with various hemolytic diseases and to design therapeutic strategies based on measured values. However, further studies are required to assess its clinical performance.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.