Xinyue Hu, Hanbing Ma, Baineng Zhou, Yinjie Deng, Wen Li
{"title":"Rapid degradation of thermosetting ester epoxies and monomer recovery methods","authors":"Xinyue Hu, Hanbing Ma, Baineng Zhou, Yinjie Deng, Wen Li","doi":"10.1007/s00396-024-05287-2","DOIUrl":null,"url":null,"abstract":"<div><p>The degradation and recycling of waste epoxy resins is an urgent environmental problem, encouraging the use of degradable thermosetting epoxies. In this study, a high-performance thermosetting epoxy resin material that can be easily degraded and recycled was prepared using a low-viscosity and high-activity epoxy monomer, tetrahydrophthalic acid diglycidyl ester. Owing to the breakable ester bond in this epoxy monomer, the thermosetting three-dimensional epoxy cross-linked structure can be rapidly degraded using ethylene glycol at atmospheric pressure. After further depolymerization of the epoxy resin/glycol solution with NaOH, sodium cyclohexene-2-carboxylate was obtained. The sodium salt was acidified, epoxidized, and then re-prepared to obtain the epoxy monomer diglycidyl tetrahydrophthalate. The recycled epoxy monomer possesses the same thermal and mechanical properties as the original epoxy monomer, thus realizing the economic and environmentally friendly degradation and recycling of the thermosetting epoxy resin under mild conditions, and this recycling method is applicable to epoxy systems with ester bonding in the cured material.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 9","pages":"1467 - 1478"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05287-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The degradation and recycling of waste epoxy resins is an urgent environmental problem, encouraging the use of degradable thermosetting epoxies. In this study, a high-performance thermosetting epoxy resin material that can be easily degraded and recycled was prepared using a low-viscosity and high-activity epoxy monomer, tetrahydrophthalic acid diglycidyl ester. Owing to the breakable ester bond in this epoxy monomer, the thermosetting three-dimensional epoxy cross-linked structure can be rapidly degraded using ethylene glycol at atmospheric pressure. After further depolymerization of the epoxy resin/glycol solution with NaOH, sodium cyclohexene-2-carboxylate was obtained. The sodium salt was acidified, epoxidized, and then re-prepared to obtain the epoxy monomer diglycidyl tetrahydrophthalate. The recycled epoxy monomer possesses the same thermal and mechanical properties as the original epoxy monomer, thus realizing the economic and environmentally friendly degradation and recycling of the thermosetting epoxy resin under mild conditions, and this recycling method is applicable to epoxy systems with ester bonding in the cured material.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.