{"title":"Deep learning-based classification and application test of multiple crop leaf diseases using transfer learning and the attention mechanism","authors":"Yifu Zhang, Qian Sun, Ji Chen, Huini Zhou","doi":"10.1007/s00607-024-01308-8","DOIUrl":null,"url":null,"abstract":"<p>Crop diseases are among the major natural disasters in agricultural production that seriously restrict the growth and development of crops, threatening food security. Timely classification, accurate identification, and the application of methods suitable for the situation can effectively prevent and control crop diseases, improving the quality of agricultural products. Considering the huge variety of crops, diseases, and differences in the characteristics of diseases during each stage, the current convolutional neural network models based on deep learning need to meet the higher requirement of classifying crop diseases accurately. It is necessary to introduce a new architecture scheme to improve the recognition effect. Therefore, in this study, we optimized the deep learning-based classification model for multiple crop leaf diseases using combined transfer learning and the attention mechanism, the modified model was deployed in the smartphone for testing. Dataset that containing 10 types of crops, 61 types of diseases, and different degrees was established, the algorithm structure based on ResNet50 was designed using transfer learning and the SE attention mechanism. The classification performances of different improvement methods were compared by model training. Result indicates that the average accuracy of the proposed TL-SE-ResNet50 model is increased by 7.7%, reaching 96.32%. The model was also integrated and implemented in the smartphone and the test result of the application reaches 94.8%, and the average response time is 882 ms. The improved model proposed has a good effect on the identification of diseases and their condition of multiple crops, and the application can meet the portable usage needs of farmers. This study can provide reference for more crop disease management research in agricultural production.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"37 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01308-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Crop diseases are among the major natural disasters in agricultural production that seriously restrict the growth and development of crops, threatening food security. Timely classification, accurate identification, and the application of methods suitable for the situation can effectively prevent and control crop diseases, improving the quality of agricultural products. Considering the huge variety of crops, diseases, and differences in the characteristics of diseases during each stage, the current convolutional neural network models based on deep learning need to meet the higher requirement of classifying crop diseases accurately. It is necessary to introduce a new architecture scheme to improve the recognition effect. Therefore, in this study, we optimized the deep learning-based classification model for multiple crop leaf diseases using combined transfer learning and the attention mechanism, the modified model was deployed in the smartphone for testing. Dataset that containing 10 types of crops, 61 types of diseases, and different degrees was established, the algorithm structure based on ResNet50 was designed using transfer learning and the SE attention mechanism. The classification performances of different improvement methods were compared by model training. Result indicates that the average accuracy of the proposed TL-SE-ResNet50 model is increased by 7.7%, reaching 96.32%. The model was also integrated and implemented in the smartphone and the test result of the application reaches 94.8%, and the average response time is 882 ms. The improved model proposed has a good effect on the identification of diseases and their condition of multiple crops, and the application can meet the portable usage needs of farmers. This study can provide reference for more crop disease management research in agricultural production.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.