Multi-cycle Chamber Conditioning for Plasma Etching of SiO2: From Optimization to Stability in Lot Processing

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-07-08 DOI:10.1007/s11090-024-10493-5
Ali Nawaz, Alessandro Cian, Lorenza Ferrario, Antonino Picciotto
{"title":"Multi-cycle Chamber Conditioning for Plasma Etching of SiO2: From Optimization to Stability in Lot Processing","authors":"Ali Nawaz, Alessandro Cian, Lorenza Ferrario, Antonino Picciotto","doi":"10.1007/s11090-024-10493-5","DOIUrl":null,"url":null,"abstract":"<p>Hydrofluorocarbon gas chemistries have long been favored for SiO<sub>2</sub> etching. However, the fluorocarbon polymer generated during the process not only assists in obtaining a high selectivity, but also leads to chamber wall contamination. The adhesion efficiency of the polymer depends on the chamber wall temperature, which needs to be well-controlled to ensure controllable polymer deposition rate and etch characteristics. Similarly, the increasing gas temperature during the process is also expected to increase the production rate of polymer precursors. Hence, it is important to properly condition the chamber so that a sufficiently high and stable chamber temperature is reached before starting the actual process. This work utilizes an Inductively Coupled Plasma Reactive Ion Etcher to optimize a multi-cycle chamber conditioning process for two C<sub>4</sub>F<sub>8</sub>/H<sub>2</sub>-based chemistries. We use the integrated optical emission spectroscopy (OES) tool to show that the dependence of etch characteristics on conditioning time is much stronger for the highly polymerizing chemistry. For a low conditioning time (&lt; 15 min), the instability of plasma species indicate that the chamber temperature has not yet plateaued, resulting in a ⁓60% decrease of recess in the underlying silicon layer during the lot processing time. By conducting systematic etch tests, we analyze the behavior of key OES peaks to identify the optimal conditioning time (≥ 30 min) for this recipe, which results in only a 13% decrease in silicon recess depth during the processing time. Subsequently, a method to assess the stability of plasma species during the conditioning process is devised, assisting in advance to identify the optimal moment to initiate the lot process. By comparing the experimental results of the two etch recipes, we also highlight the important correlation between conditioning time and polymerizing degree of the chemistry.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-024-10493-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrofluorocarbon gas chemistries have long been favored for SiO2 etching. However, the fluorocarbon polymer generated during the process not only assists in obtaining a high selectivity, but also leads to chamber wall contamination. The adhesion efficiency of the polymer depends on the chamber wall temperature, which needs to be well-controlled to ensure controllable polymer deposition rate and etch characteristics. Similarly, the increasing gas temperature during the process is also expected to increase the production rate of polymer precursors. Hence, it is important to properly condition the chamber so that a sufficiently high and stable chamber temperature is reached before starting the actual process. This work utilizes an Inductively Coupled Plasma Reactive Ion Etcher to optimize a multi-cycle chamber conditioning process for two C4F8/H2-based chemistries. We use the integrated optical emission spectroscopy (OES) tool to show that the dependence of etch characteristics on conditioning time is much stronger for the highly polymerizing chemistry. For a low conditioning time (< 15 min), the instability of plasma species indicate that the chamber temperature has not yet plateaued, resulting in a ⁓60% decrease of recess in the underlying silicon layer during the lot processing time. By conducting systematic etch tests, we analyze the behavior of key OES peaks to identify the optimal conditioning time (≥ 30 min) for this recipe, which results in only a 13% decrease in silicon recess depth during the processing time. Subsequently, a method to assess the stability of plasma species during the conditioning process is devised, assisting in advance to identify the optimal moment to initiate the lot process. By comparing the experimental results of the two etch recipes, we also highlight the important correlation between conditioning time and polymerizing degree of the chemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二氧化硅等离子蚀刻的多循环腔室调节:批量加工中从优化到稳定
长期以来,氢氟碳气体化学成分一直是二氧化硅蚀刻的首选。然而,工艺过程中产生的碳氟化合物聚合物不仅有助于获得高选择性,还会导致腔壁污染。聚合物的附着效率取决于腔壁温度,而腔壁温度必须控制得很好,以确保聚合物沉积速率和蚀刻特性可控。同样,工艺过程中气体温度的升高也会提高聚合物前驱体的生产率。因此,在开始实际制程之前,必须对腔体进行适当调节,以达到足够高且稳定的腔体温度。这项研究利用电感耦合等离子体反应离子蚀刻机优化了两种基于 C4F8/H2 化学物质的多循环腔室调节过程。我们利用集成的光学发射光谱 (OES) 工具表明,对于高聚合度化学而言,蚀刻特性对调节时间的依赖性更强。在调节时间较短(15 分钟)的情况下,等离子体种类的不稳定性表明腔室温度尚未趋于稳定,从而导致硅底层的凹槽在批量处理时间内减少了 60%。通过进行系统蚀刻测试,我们分析了关键 OES 峰的行为,从而确定了该配方的最佳调节时间(≥ 30 分钟),这使得硅凹槽深度在加工时间内仅减少 13%。随后,还设计了一种方法来评估等离子体物种在调节过程中的稳定性,从而提前确定启动批量处理过程的最佳时机。通过比较两种蚀刻配方的实验结果,我们还强调了调节时间与化学聚合度之间的重要关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Ar-O2 Plasma-Induced Grafting of Quaternary Ammonium on Polyvinyl Chloride Surface to Improve its Antimicrobial Properties Influence of Dielectric Barrier Discharge Power on the Removal of CH4 and NO From Exhaust Emissions of LNG Engines Low-Temperature Oxidation of Diesel Particulate Matter Using Dielectric Barrier Discharge Plasma Degradation of Methylene Blue by Using an Argon Microwave Plasma Jet in Humid Environment Multi-cycle Chamber Conditioning for Plasma Etching of SiO2: From Optimization to Stability in Lot Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1