Manuel Carminati , Luca Vecchia , Lisa Stoos , Nicolas H. Thomä
{"title":"Pioneer factors: Emerging rules of engagement for transcription factors on chromatinized DNA","authors":"Manuel Carminati , Luca Vecchia , Lisa Stoos , Nicolas H. Thomä","doi":"10.1016/j.sbi.2024.102875","DOIUrl":null,"url":null,"abstract":"<div><p>Pioneering transcription factors (TFs) can drive cell fate changes by binding their DNA motifs in a repressive chromatin environment. Recent structures illustrate emerging rules for nucleosome engagement: TFs distort the nucleosomal DNA to gain access or employ alternative DNA-binding modes with smaller footprints, they preferentially access solvent-exposed motifs near the entry/exit sites, and frequently interact with histones. The extent of TF–histone interactions, in turn, depends on the motif location on the nucleosome, the type of DNA-binding fold, and adjacent domains present. TF–histone interactions can phase TF motifs relative to nucleosomes, and we discuss how these complex and surprisingly diverse interactions between nucleosomes and TFs contribute to function.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"88 ","pages":"Article 102875"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001027/pdfft?md5=d4afa1b763b97504bc80bc151367e940&pid=1-s2.0-S0959440X24001027-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pioneering transcription factors (TFs) can drive cell fate changes by binding their DNA motifs in a repressive chromatin environment. Recent structures illustrate emerging rules for nucleosome engagement: TFs distort the nucleosomal DNA to gain access or employ alternative DNA-binding modes with smaller footprints, they preferentially access solvent-exposed motifs near the entry/exit sites, and frequently interact with histones. The extent of TF–histone interactions, in turn, depends on the motif location on the nucleosome, the type of DNA-binding fold, and adjacent domains present. TF–histone interactions can phase TF motifs relative to nucleosomes, and we discuss how these complex and surprisingly diverse interactions between nucleosomes and TFs contribute to function.
先驱转录因子(TF)可通过在抑制性染色质环境中结合其 DNA motifs 来驱动细胞命运的改变。最新的结构说明了新出现的核糖体参与规则:转录因子会扭曲核糖体 DNA 以进入核糖体,或采用足迹较小的其他 DNA 结合模式,它们会优先进入出入位点附近的溶剂暴露基团,并经常与组蛋白相互作用。反过来,TF-组蛋白相互作用的程度取决于核小体上的基调位置、DNA 结合折叠类型以及存在的相邻结构域。TF与组蛋白的相互作用可使TF基团相对于核小体发生相位变化,我们将讨论核小体与TF之间这些复杂而又令人惊奇的相互作用是如何对功能起作用的。
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation