Teng Zhang , Fangyu Peng , Xiaowei Tang , Rong Yan , Runpeng Deng , Shengqiang Zhao
{"title":"A sparse knowledge embedded configuration optimization method for robotic machining system toward improving machining quality","authors":"Teng Zhang , Fangyu Peng , Xiaowei Tang , Rong Yan , Runpeng Deng , Shengqiang Zhao","doi":"10.1016/j.rcim.2024.102818","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, robotic machining has become one of the most important paradigms for the machining of large and complex parts due to the advantages of large workspaces and flexible configurations. However, different configurations will correspond to very different system performances, influenced by the position-dependent properties. Therefore, the configuration optimization of robotic machining system is the key to ensure the quality of robotic operation. In response to the fact that little attention has been paid in current research to the effect of mapping model distribution differences on the optimization results, a sparse knowledge embedded configuration optimization method for robotic machining systems toward improving machining quality is proposed. The knowledge of theoretical model-based optimization in terms of stage, density and redundancy is embedded into high-fidelity data by three steps sparse and real measurement. Pre-training and domain adaptation fine-tuning strategies are used to reconstruct the real mapping model accurately. The reconstructed mapping model is re-optimized to obtain a more accurate system configuration. The effectiveness of the proposed method is verified by machining experiments on space segment parts. The proposed method reduces the absolute position error and machining error by 48.67 % and 28.73 %, respectively, compared to the current common theoretical model-based optimization. This is significant for more accurate and reliable robot system optimization. Furthermore, this work confirms the influence of mapping model distribution differences on the optimization effect, providing a new and effective perspective for subsequent research on the optimization of robotic machining system configurations.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"90 ","pages":"Article 102818"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001054","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, robotic machining has become one of the most important paradigms for the machining of large and complex parts due to the advantages of large workspaces and flexible configurations. However, different configurations will correspond to very different system performances, influenced by the position-dependent properties. Therefore, the configuration optimization of robotic machining system is the key to ensure the quality of robotic operation. In response to the fact that little attention has been paid in current research to the effect of mapping model distribution differences on the optimization results, a sparse knowledge embedded configuration optimization method for robotic machining systems toward improving machining quality is proposed. The knowledge of theoretical model-based optimization in terms of stage, density and redundancy is embedded into high-fidelity data by three steps sparse and real measurement. Pre-training and domain adaptation fine-tuning strategies are used to reconstruct the real mapping model accurately. The reconstructed mapping model is re-optimized to obtain a more accurate system configuration. The effectiveness of the proposed method is verified by machining experiments on space segment parts. The proposed method reduces the absolute position error and machining error by 48.67 % and 28.73 %, respectively, compared to the current common theoretical model-based optimization. This is significant for more accurate and reliable robot system optimization. Furthermore, this work confirms the influence of mapping model distribution differences on the optimization effect, providing a new and effective perspective for subsequent research on the optimization of robotic machining system configurations.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.