Optical sensor for BTEX detection: Integrating machine learning for enhanced sensing

Mary Hashemitaheri , Ebrahim Ebrahimi , Geethanga de Silva , Hamed Attariani
{"title":"Optical sensor for BTEX detection: Integrating machine learning for enhanced sensing","authors":"Mary Hashemitaheri ,&nbsp;Ebrahim Ebrahimi ,&nbsp;Geethanga de Silva ,&nbsp;Hamed Attariani","doi":"10.1016/j.asems.2024.100114","DOIUrl":null,"url":null,"abstract":"<div><p>Optical sensors provide a fast and real-time approach to detect benzene, toluene, ethylbenzene, and xylenes (BTEX) in environmental monitoring and industrial safety. However, detecting the concentration of a particular gas in a mixture can be challenging. Here, we develop a machine-learning model that can precisely measure BTEX concentrations simultaneously based on an absorption spectroscopy gas sensing system. The convolutional neural network (CNN) is utilized to identify the absorbance spectra for each volatile, along with their concentrations in a mixture. A synthetic data set is generated using a series of physics-based simulations to create the predictive model. The data set consists of the overall absorbance of numerous random BTEX mixtures over time, based on various percentages of the permissible exposure limit (PEL). It is worth noting that benzene has a negligible absorbance (very low PEL, 1–5 ppm) compared to other volatile gases, which makes it difficult to detect. To address this challenge, we introduce a 3-stage solution to accurately discriminate between all BTEX species, regardless of their concentration levels. As a result, the <em>R</em>-squared above 0.99 for toluene, ethylbenzene, and <em>o</em>-xylene, and the <em>R</em>-squared above 0.96 for benzene, is achieved, indicating the model's capability to predict BTEX concentrations.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 3","pages":"Article 100114"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000256/pdfft?md5=047336d5ab3534e0b13372d65d27ee14&pid=1-s2.0-S2773045X24000256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X24000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical sensors provide a fast and real-time approach to detect benzene, toluene, ethylbenzene, and xylenes (BTEX) in environmental monitoring and industrial safety. However, detecting the concentration of a particular gas in a mixture can be challenging. Here, we develop a machine-learning model that can precisely measure BTEX concentrations simultaneously based on an absorption spectroscopy gas sensing system. The convolutional neural network (CNN) is utilized to identify the absorbance spectra for each volatile, along with their concentrations in a mixture. A synthetic data set is generated using a series of physics-based simulations to create the predictive model. The data set consists of the overall absorbance of numerous random BTEX mixtures over time, based on various percentages of the permissible exposure limit (PEL). It is worth noting that benzene has a negligible absorbance (very low PEL, 1–5 ppm) compared to other volatile gases, which makes it difficult to detect. To address this challenge, we introduce a 3-stage solution to accurately discriminate between all BTEX species, regardless of their concentration levels. As a result, the R-squared above 0.99 for toluene, ethylbenzene, and o-xylene, and the R-squared above 0.96 for benzene, is achieved, indicating the model's capability to predict BTEX concentrations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测 BTEX 的光学传感器:整合机器学习,增强传感能力
光学传感器为环境监测和工业安全提供了一种快速、实时检测苯、甲苯、乙苯和二甲苯(BTEX)的方法。然而,检测混合物中特定气体的浓度是一项挑战。在此,我们基于吸收光谱气体传感系统开发了一种机器学习模型,可同时精确测量 BTEX 的浓度。我们利用卷积神经网络(CNN)来识别每种挥发性物质的吸收光谱以及它们在混合物中的浓度。使用一系列基于物理的模拟生成合成数据集,以创建预测模型。该数据集包括大量随机 BTEX 混合物随着时间推移的总体吸光度,基于允许接触限值 (PEL) 的不同百分比。值得注意的是,与其他挥发性气体相比,苯的吸光度可以忽略不计(PEL 很低,1-5 ppm),因此很难检测。为了应对这一挑战,我们引入了一种三阶段解决方案,以准确区分所有 BTEX 种类,而不论其浓度水平如何。结果,甲苯、乙苯和邻二甲苯的 R 方均超过 0.99,苯的 R 方均超过 0.96,表明该模型具有预测 BTEX 浓度的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox-active sp2-c connected metal covalent organic frameworks for selective detection and reductive separation of uranium Porphyrin-based metal-organic frameworks for cancer theranostics Corrigendum to “Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts” [Adv Sensor Energy Mater 1 (2022) 100007] Spherical nucleic acids for biomedical applications Ligand-free Cs2PdBr6 perovskite microcrystals with narrow bandgap and high photoelectrochemical performance in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1