Ingemar Petermann , Magnus Lindblom , Carola Sterner , Greger Gregard , Stefan Karlsson
{"title":"Optical fiber sensor solutions for in-situ transmittance control of electrochromic glazing","authors":"Ingemar Petermann , Magnus Lindblom , Carola Sterner , Greger Gregard , Stefan Karlsson","doi":"10.1016/j.asems.2025.100134","DOIUrl":null,"url":null,"abstract":"<div><div>Windows are essential to let natural daylight into our buildings. Smart and dynamic glazing is an important technology for achieving sustainable and energy-efficient buildings with good indoor environment by reducing the need for air-conditioning. Electrochromic glazing is the commercial state-of-the-art for smart and dynamic glazing. In principle electrochromic glazing works like a thin film battery, whose lifetime is enhanced if the combination of elevated temperature and a high state-of-charge, or low light transmittance, are avoided. Therefore, a direct transmittance measurement is desirable. In this study, we have evaluated four different methods using optical fibers, whereof two methods were found to work well, both in initial testing and when compared to reference transmittance cycling measurements. Both methods relied on light from a light emitting diode, at 810 nm wavelength, that was propagated either through the electrochromic foil or along it. The latter shows most potential to be implemented in a manufacturing process of smart glazing.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100134"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X25000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Windows are essential to let natural daylight into our buildings. Smart and dynamic glazing is an important technology for achieving sustainable and energy-efficient buildings with good indoor environment by reducing the need for air-conditioning. Electrochromic glazing is the commercial state-of-the-art for smart and dynamic glazing. In principle electrochromic glazing works like a thin film battery, whose lifetime is enhanced if the combination of elevated temperature and a high state-of-charge, or low light transmittance, are avoided. Therefore, a direct transmittance measurement is desirable. In this study, we have evaluated four different methods using optical fibers, whereof two methods were found to work well, both in initial testing and when compared to reference transmittance cycling measurements. Both methods relied on light from a light emitting diode, at 810 nm wavelength, that was propagated either through the electrochromic foil or along it. The latter shows most potential to be implemented in a manufacturing process of smart glazing.