Transient shuttle for a widespread neural probe with minimal perturbation

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2024-07-13 DOI:10.1038/s41528-024-00328-w
Yeonwook Roh, Hyeongseok Kim, Eun-A Kim, Kyungbin Ji, Minji Kang, Dohyeon Gong, Sunghoon Im, Insic Hong, Jieun Park, Soo Jung Park, Yiseul Bae, Jae-Il Park, Je-Sung Koh, Seungyong Han, Eun Jeong Lee, Daeshik Kang
{"title":"Transient shuttle for a widespread neural probe with minimal perturbation","authors":"Yeonwook Roh, Hyeongseok Kim, Eun-A Kim, Kyungbin Ji, Minji Kang, Dohyeon Gong, Sunghoon Im, Insic Hong, Jieun Park, Soo Jung Park, Yiseul Bae, Jae-Il Park, Je-Sung Koh, Seungyong Han, Eun Jeong Lee, Daeshik Kang","doi":"10.1038/s41528-024-00328-w","DOIUrl":null,"url":null,"abstract":"Bioelectronic implants in the deep brain provide the opportunity to monitor deep brain activity with potential applications in disease diagnostics and treatment. However, mechanical mismatch between a probe and brain tissue can cause surgical trauma in the brain and limit chronic probe-based monitoring, leading to performance degradation. Here, we report a transient shuttle-based probe consisting of a PVA and a mesh-type probe. A rigid shuttle based on PVA implants an ultrathin mesh probe in the target deep brain without a tangle, while creating both a sharp edge for facile penetration into the brain and an anti-friction layer between the probe and brain tissue through dissolving its surface. The capability to shuttle dissolved materials can exclude the retracted process of the shuttle in the brain. Complete dissolution of the shuttle provides a dramatic decrease (~1078-fold) in the stiffness of the probe, which can therefore chronically monitor a wide area of the brain. These results indicate the ability to use a simplistic design for implantation of wide and deep brain probes while preventing unnecessary damage to the brain and probe degradation during long-term use.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00328-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00328-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Bioelectronic implants in the deep brain provide the opportunity to monitor deep brain activity with potential applications in disease diagnostics and treatment. However, mechanical mismatch between a probe and brain tissue can cause surgical trauma in the brain and limit chronic probe-based monitoring, leading to performance degradation. Here, we report a transient shuttle-based probe consisting of a PVA and a mesh-type probe. A rigid shuttle based on PVA implants an ultrathin mesh probe in the target deep brain without a tangle, while creating both a sharp edge for facile penetration into the brain and an anti-friction layer between the probe and brain tissue through dissolving its surface. The capability to shuttle dissolved materials can exclude the retracted process of the shuttle in the brain. Complete dissolution of the shuttle provides a dramatic decrease (~1078-fold) in the stiffness of the probe, which can therefore chronically monitor a wide area of the brain. These results indicate the ability to use a simplistic design for implantation of wide and deep brain probes while preventing unnecessary damage to the brain and probe degradation during long-term use.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以最小的扰动实现广泛神经探测的瞬时穿梭
大脑深部的生物电子植入体为监测大脑深部活动提供了机会,并有可能应用于疾病诊断和治疗。然而,探针与脑组织之间的机械不匹配会对大脑造成手术创伤,并限制基于探针的长期监测,导致性能下降。在此,我们报告了一种由 PVA 和网状探针组成的瞬时穿梭式探针。以 PVA 为基础的刚性穿梭器将超薄网状探针植入目标大脑深部,不会产生缠结,同时通过溶解探针表面,在探针和脑组织之间形成一个防摩擦层,使探针边缘锋利,便于穿透大脑。穿梭溶解材料的能力可以排除穿梭器在大脑中的缩回过程。梭子的完全溶解使探针的硬度急剧下降(约 1078 倍),因此可以对大脑的大范围区域进行长期监测。这些结果表明,可以使用简单的设计来植入大范围和深层脑探针,同时防止在长期使用过程中对大脑造成不必要的损伤和探针退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Autonomous self-healing in a stretchable polybutadiene-based urethane and eutectic gallium indium conductive composite Tailoring threshold voltage of R2R printed SWCNT thin film transistors for realizing 4 bit ALU Flash synthesis of high-performance and color-tunable copper(I)-based cluster scintillators for efficient dynamic X-ray imaging Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics Unobstructive and safe-to-wear watt-level wireless charger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1