Ernesto Saenz , Nathally Espinosa Montagut , Baohong Wang , Christoph Stein-Thöringer , Kaicen Wang , Honglei Weng , Matthias Ebert , Kai Markus Schneider , Lanjuan Li , Andreas Teufel
{"title":"Manipulating the Gut Microbiome to Alleviate Steatotic Liver Disease: Current Progress and Challenges","authors":"Ernesto Saenz , Nathally Espinosa Montagut , Baohong Wang , Christoph Stein-Thöringer , Kaicen Wang , Honglei Weng , Matthias Ebert , Kai Markus Schneider , Lanjuan Li , Andreas Teufel","doi":"10.1016/j.eng.2024.03.019","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of metabolic-dysfunction-associated steatotic liver disease (MASLD) is alarmingly high; it is estimated to affect up to a quarter of the global population, making it the most common liver disorder worldwide. MASLD is characterized by excessive hepatic fat accumulation and is commonly associated with comorbidities such as obesity, dyslipidemia, and insulin resistance; however, it can also manifest in lean individuals. Therefore, it is crucial to develop effective therapies for this complex condition. Currently, there are no approved medications for MASLD treatment, so there is a pressing need to investigate alternative approaches. Extensive research has characterized MASLD as a multifaceted disease, frequently linked to metabolic disorders that stem from dietary habits. Evidence suggests that changes in the gut microbiome play a fundamental role in the development and progression of MASLD from simple steatosis to steatohepatitis and even hepatocellular carcinoma (HCC). In this review, we critically examine the literature on the emerging field of gut-microbiota-based therapies for MASLD and metabolic-dysfunction-associated steatohepatitis (MASH), including interventions such as fecal microbiota transplantation (FMT), probiotics, prebiotics, short-chain fatty acids, antibiotics, metabolic pathway targeting, and immune checkpoint kinase blockade.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924002686/pdfft?md5=84b88a1f8f90fe530c70df671902fde6&pid=1-s2.0-S2095809924002686-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002686","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of metabolic-dysfunction-associated steatotic liver disease (MASLD) is alarmingly high; it is estimated to affect up to a quarter of the global population, making it the most common liver disorder worldwide. MASLD is characterized by excessive hepatic fat accumulation and is commonly associated with comorbidities such as obesity, dyslipidemia, and insulin resistance; however, it can also manifest in lean individuals. Therefore, it is crucial to develop effective therapies for this complex condition. Currently, there are no approved medications for MASLD treatment, so there is a pressing need to investigate alternative approaches. Extensive research has characterized MASLD as a multifaceted disease, frequently linked to metabolic disorders that stem from dietary habits. Evidence suggests that changes in the gut microbiome play a fundamental role in the development and progression of MASLD from simple steatosis to steatohepatitis and even hepatocellular carcinoma (HCC). In this review, we critically examine the literature on the emerging field of gut-microbiota-based therapies for MASLD and metabolic-dysfunction-associated steatohepatitis (MASH), including interventions such as fecal microbiota transplantation (FMT), probiotics, prebiotics, short-chain fatty acids, antibiotics, metabolic pathway targeting, and immune checkpoint kinase blockade.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.