Development and validation of an electronic health record-based algorithm for identifying TBI in the VA: A VA Million Veteran Program study.

IF 1.5 4区 医学 Q4 NEUROSCIENCES Brain injury Pub Date : 2024-11-09 Epub Date: 2024-07-14 DOI:10.1080/02699052.2024.2373920
Victoria C Merritt, Alicia W Chen, Clara-Lea Bonzel, Chuan Hong, Rahul Sangar, Sara Morini Sweet, Scott F Sorg, Catherine Chanfreau-Coffinier
{"title":"Development and validation of an electronic health record-based algorithm for identifying TBI in the VA: A VA Million Veteran Program study.","authors":"Victoria C Merritt, Alicia W Chen, Clara-Lea Bonzel, Chuan Hong, Rahul Sangar, Sara Morini Sweet, Scott F Sorg, Catherine Chanfreau-Coffinier","doi":"10.1080/02699052.2024.2373920","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to develop and validate an algorithm for identifying Veterans with a history of traumatic brain injury (TBI) in the Veterans Affairs (VA) electronic health record using VA Million Veteran Program (MVP) data. Manual chart review (<i>n</i> = 200) was first used to establish 'gold standard' diagnosis labels for TBI ('Yes TBI' vs. 'No TBI'). To develop our algorithm, we used PheCAP, a semi-supervised pipeline that relied on the chart review diagnosis labels to train and create a prediction model for TBI. Cross-validation was used to train and evaluate the proposed algorithm, 'TBI-PheCAP.' TBI-PheCAP performance was compared to existing TBI algorithms and phenotyping methods, and the final algorithm was run on all MVP participants (<i>n</i> = 702,740) to assign a predicted probability for TBI and a binary classification status choosing specificity = 90%. The TBI-PheCAP algorithm had an area under the receiver operating characteristic curve of 0.92, sensitivity of 84%, and positive predictive value (PPV) of 98% at specificity = 90%. TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. Given its strong classification metrics, the TBI-PheCAP algorithm is recommended for use in future population-based TBI research.</p>","PeriodicalId":9082,"journal":{"name":"Brain injury","volume":" ","pages":"1084-1092"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain injury","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02699052.2024.2373920","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to develop and validate an algorithm for identifying Veterans with a history of traumatic brain injury (TBI) in the Veterans Affairs (VA) electronic health record using VA Million Veteran Program (MVP) data. Manual chart review (n = 200) was first used to establish 'gold standard' diagnosis labels for TBI ('Yes TBI' vs. 'No TBI'). To develop our algorithm, we used PheCAP, a semi-supervised pipeline that relied on the chart review diagnosis labels to train and create a prediction model for TBI. Cross-validation was used to train and evaluate the proposed algorithm, 'TBI-PheCAP.' TBI-PheCAP performance was compared to existing TBI algorithms and phenotyping methods, and the final algorithm was run on all MVP participants (n = 702,740) to assign a predicted probability for TBI and a binary classification status choosing specificity = 90%. The TBI-PheCAP algorithm had an area under the receiver operating characteristic curve of 0.92, sensitivity of 84%, and positive predictive value (PPV) of 98% at specificity = 90%. TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. Given its strong classification metrics, the TBI-PheCAP algorithm is recommended for use in future population-based TBI research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发和验证基于电子健康记录的算法,用于识别退伍军人事务部的创伤性脑损伤:退伍军人事务部百万退伍军人计划研究。
本研究的目的是利用退伍军人事务部 (VA) 的百万退伍军人计划 (MVP) 数据,开发并验证一种算法,用于在退伍军人事务部 (VA) 电子健康记录中识别有创伤性脑损伤 (TBI) 病史的退伍军人。首先使用人工病历审查(n = 200)来确定 TBI 的 "金标准 "诊断标签("有 TBI "与 "无 TBI")。为了开发算法,我们使用了 PheCAP,这是一个半监督管道,依靠病历审查诊断标签来训练和创建 TBI 预测模型。我们将 TBI-PheCAP 的性能与现有的 TBI 算法和表型方法进行了比较,并在所有 MVP 参与者(n = 702,740 人)上运行了最终算法,以分配 TBI 的预测概率和选择特异性 = 90% 的二元分类状态。TBI-PheCAP 算法的接收者工作特征曲线下面积为 0.92,灵敏度为 84%,特异性 = 90% 时的阳性预测值 (PPV) 为 98%。TBI-PheCAP 的表现普遍优于其他分类方法,其灵敏度和 PPV 与现有的基于规则的 TBI 算法和 MVP TBI 相关调查数据相当或更高。鉴于其强大的分类指标,建议在未来基于人群的 TBI 研究中使用 TBI-PheCAP 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain injury
Brain injury 医学-康复医学
CiteScore
3.50
自引率
5.30%
发文量
148
审稿时长
12 months
期刊介绍: Brain Injury publishes critical information relating to research and clinical practice, adult and pediatric populations. The journal covers a full range of relevant topics relating to clinical, translational, and basic science research. Manuscripts address emergency and acute medical care, acute and post-acute rehabilitation, family and vocational issues, and long-term supports. Coverage includes assessment and interventions for functional, communication, neurological and psychological disorders.
期刊最新文献
Functional network disruptions in youth with concussion using the Adolescent Brain Cognitive Development study. Treatment of intractable paradoxical herniation by invasive mechanical ventilation with increased positive end-expiratory pressure: a case report. Assessment of arousal recovery after cardiac arrest using diffusion kurtosis MRI with higher b-values: a pilot study. Redefining adjustment after acquired brain injury. Antiseizure medication possibly potentiates ictal bradycardia: a word of caution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1