Sejin Ha, Byung Soo Park, Sangwon Han, Jungsu S Oh, Sun Young Chae, Jae Seung Kim, Dae Hyuk Moon
{"title":"Deep learning-based measurement of split glomerular filtration rate with <sup>99m</sup>Tc-diethylenetriamine pentaacetic acid renal scan.","authors":"Sejin Ha, Byung Soo Park, Sangwon Han, Jungsu S Oh, Sun Young Chae, Jae Seung Kim, Dae Hyuk Moon","doi":"10.1186/s40658-024-00664-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a deep learning (DL) model for generating automated regions of interest (ROIs) on <sup>99m</sup>Tc-diethylenetriamine pentaacetic acid (DTPA) renal scans for glomerular filtration rate (GFR) measurement.</p><p><strong>Methods: </strong>Manually-drawn ROIs retrieved from a Picture Archiving and Communications System were used as ground-truth (GT) labels. A two-dimensional U-Net convolutional neural network architecture with multichannel input was trained to generate DL ROIs. The agreement between GFR values from GT and DL ROIs was evaluated using Lin's concordance correlation coefficient (CCC) and slope coefficients for linear regression analyses. Bias and 95% limits of agreement (LOA) were assessed using Bland-Altman plots.</p><p><strong>Results: </strong>A total of 24,364 scans (12,822 patients) were included. Excellent concordance between GT and DL GFR was found for left (CCC 0.982, 95% confidence interval [CI] 0.981-0.982; slope 1.004, 95% CI 1.003-1.004), right (CCC 0.969, 95% CI 0.968-0.969; slope 0.954, 95% CI 0.953-0.955) and both kidneys (CCC 0.978, 95% CI 0.978-0.979; slope 0.979, 95% CI 0.978-0.979). Bland-Altman analysis revealed minimal bias between GT and DL GFR, with mean differences of - 0.2 (95% LOA - 4.4-4.0), 1.4 (95% LOA - 3.5-6.3) and 1.2 (95% LOA - 6.5-8.8) mL/min/1.73 m² for left, right and both kidneys, respectively. Notably, 19,960 scans (81.9%) showed an absolute difference in GFR of less than 5 mL/min/1.73 m².</p><p><strong>Conclusion: </strong>Our DL model exhibited excellent performance in the generation of ROIs on <sup>99m</sup>Tc-DTPA renal scans. This automated approach could potentially reduce manual effort and enhance the precision of GFR measurement in clinical practice.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"64"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00664-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To develop a deep learning (DL) model for generating automated regions of interest (ROIs) on 99mTc-diethylenetriamine pentaacetic acid (DTPA) renal scans for glomerular filtration rate (GFR) measurement.
Methods: Manually-drawn ROIs retrieved from a Picture Archiving and Communications System were used as ground-truth (GT) labels. A two-dimensional U-Net convolutional neural network architecture with multichannel input was trained to generate DL ROIs. The agreement between GFR values from GT and DL ROIs was evaluated using Lin's concordance correlation coefficient (CCC) and slope coefficients for linear regression analyses. Bias and 95% limits of agreement (LOA) were assessed using Bland-Altman plots.
Results: A total of 24,364 scans (12,822 patients) were included. Excellent concordance between GT and DL GFR was found for left (CCC 0.982, 95% confidence interval [CI] 0.981-0.982; slope 1.004, 95% CI 1.003-1.004), right (CCC 0.969, 95% CI 0.968-0.969; slope 0.954, 95% CI 0.953-0.955) and both kidneys (CCC 0.978, 95% CI 0.978-0.979; slope 0.979, 95% CI 0.978-0.979). Bland-Altman analysis revealed minimal bias between GT and DL GFR, with mean differences of - 0.2 (95% LOA - 4.4-4.0), 1.4 (95% LOA - 3.5-6.3) and 1.2 (95% LOA - 6.5-8.8) mL/min/1.73 m² for left, right and both kidneys, respectively. Notably, 19,960 scans (81.9%) showed an absolute difference in GFR of less than 5 mL/min/1.73 m².
Conclusion: Our DL model exhibited excellent performance in the generation of ROIs on 99mTc-DTPA renal scans. This automated approach could potentially reduce manual effort and enhance the precision of GFR measurement in clinical practice.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.