Validation of a data-driven motion-compensated PET brain image reconstruction algorithm in clinical patients using four radiotracers.

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Physics Pub Date : 2025-02-03 DOI:10.1186/s40658-025-00723-w
Ole L Munk, Anders B Rodell, Patricia B Danielsen, Josefine R Madsen, Mie T Sørensen, Niels Okkels, Jacob Horsager, Katrine B Andersen, Per Borghammer, Joel Aanerud, Judson Jones, Inki Hong, Sven Zuehlsdorff
{"title":"Validation of a data-driven motion-compensated PET brain image reconstruction algorithm in clinical patients using four radiotracers.","authors":"Ole L Munk, Anders B Rodell, Patricia B Danielsen, Josefine R Madsen, Mie T Sørensen, Niels Okkels, Jacob Horsager, Katrine B Andersen, Per Borghammer, Joel Aanerud, Judson Jones, Inki Hong, Sven Zuehlsdorff","doi":"10.1186/s40658-025-00723-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Patients with dementia symptoms often struggle to limit movements during PET examinations, necessitating motion compensation in brain PET imaging to ensure the high image quality needed for diagnostic accuracy. This study validates a data-driven motion-compensated (MoCo) PET brain image reconstruction algorithm that corrects head motion by integrating the detected motion frames and their associated rigid body transformations into the iterative image reconstruction. Validation was conducted using phantom scans, healthy volunteers, and clinical patients using four radiotracers with distinct tracer activity distributions.</p><p><strong>Methods: </strong>We conducted technical validation experiments of the algorithm using Hoffman brain phantom scans during a series of controlled movements, followed by two blinded reader studies assessing image quality between standard images and MoCo images in 38 clinical patients receiving dementia scans with [<sup>18</sup>F]Fluorodeoxyglucose, [<sup>18</sup>F]N-(3-iodopro-2E-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)-nortropane, [<sup>18</sup>F]flutemetamol, and a research group comprising 25 elderly subjects scanned with [<sup>18</sup>F]fluoroethoxybenzovesamicol.</p><p><strong>Results: </strong>The Hoffman brain phantom study demonstrated the algorithm's capability to detect and correct for even minimal movements, 1-mm translations and 1⁰ rotations, applied to the phantom. Within the clinical cohort, where standard images were deemed suboptimal or non-diagnostic, all MoCo images were classified as having acceptable diagnostic quality. In the research cohort, MoCo images consistently matched or surpassed the standard image quality even in cases with minimal head movement, and the MoCo algorithm never led to degraded image quality.</p><p><strong>Conclusion: </strong>The PET brain MoCo reconstruction algorithm was robust and worked well for four different tracers with markedly different uptake patterns. Moco images markedly improved the image quality for patients who were unable to lie still during a PET examination and obviated the need for any repeat scans. Thus, the method was clinically feasible and has the potential for improving diagnostic accuracy.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"11"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00723-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Patients with dementia symptoms often struggle to limit movements during PET examinations, necessitating motion compensation in brain PET imaging to ensure the high image quality needed for diagnostic accuracy. This study validates a data-driven motion-compensated (MoCo) PET brain image reconstruction algorithm that corrects head motion by integrating the detected motion frames and their associated rigid body transformations into the iterative image reconstruction. Validation was conducted using phantom scans, healthy volunteers, and clinical patients using four radiotracers with distinct tracer activity distributions.

Methods: We conducted technical validation experiments of the algorithm using Hoffman brain phantom scans during a series of controlled movements, followed by two blinded reader studies assessing image quality between standard images and MoCo images in 38 clinical patients receiving dementia scans with [18F]Fluorodeoxyglucose, [18F]N-(3-iodopro-2E-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)-nortropane, [18F]flutemetamol, and a research group comprising 25 elderly subjects scanned with [18F]fluoroethoxybenzovesamicol.

Results: The Hoffman brain phantom study demonstrated the algorithm's capability to detect and correct for even minimal movements, 1-mm translations and 1⁰ rotations, applied to the phantom. Within the clinical cohort, where standard images were deemed suboptimal or non-diagnostic, all MoCo images were classified as having acceptable diagnostic quality. In the research cohort, MoCo images consistently matched or surpassed the standard image quality even in cases with minimal head movement, and the MoCo algorithm never led to degraded image quality.

Conclusion: The PET brain MoCo reconstruction algorithm was robust and worked well for four different tracers with markedly different uptake patterns. Moco images markedly improved the image quality for patients who were unable to lie still during a PET examination and obviated the need for any repeat scans. Thus, the method was clinically feasible and has the potential for improving diagnostic accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
期刊最新文献
Phantom-based investigation of block sequential regularised expectation maximisation (BSREM) reconstruction for zirconium-89 PET-CT for varied count levels. Validation of a data-driven motion-compensated PET brain image reconstruction algorithm in clinical patients using four radiotracers. A review of state-of-the-art resolution improvement techniques in SPECT imaging. Count-rate management in 131I SPECT/CT calibration. Correction: Radiopharmacokinetic modelling and radiation dose assessment of 223Ra used for treatment of metastatic castration-resistant prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1