{"title":"A novel optimization-assisted multi-scale and dilated adaptive hybrid deep learning network with feature fusion for event detection from social media.","authors":"Ruhi Patankar, Albert Pravin","doi":"10.1080/0954898X.2024.2376705","DOIUrl":null,"url":null,"abstract":"<p><p>Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"429-462"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2376705","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.