Topology reduction through machine learning to accelerate dynamic simulation of district heating

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-07-10 DOI:10.1016/j.egyai.2024.100393
Dubon Rodrigue , Mohamed Tahar Mabrouk , Bastien Pasdeloup , Patrick Meyer , Bruno Lacarrière
{"title":"Topology reduction through machine learning to accelerate dynamic simulation of district heating","authors":"Dubon Rodrigue ,&nbsp;Mohamed Tahar Mabrouk ,&nbsp;Bastien Pasdeloup ,&nbsp;Patrick Meyer ,&nbsp;Bruno Lacarrière","doi":"10.1016/j.egyai.2024.100393","DOIUrl":null,"url":null,"abstract":"<div><p>District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency is further enhanced by the capacity of these networks to integrate renewable heat sources and thermal storage systems. However, integration of these systems adds complexity to the physical dynamics of the network, necessitating complex dynamic simulation models. These dynamic physical simulations are computationally expensive, limiting their adoption, particularly in large-scale networks. To address this challenge, we propose a methodology utilizing Artificial Neural Networks (ANNs) to reduce the computational time associated with the DHNs dynamic simulations. Our approach consists in replacing predefined clusters of substations within the DHNs with trained surrogate ANNs models, effectively transforming these clusters into single nodes. This creates a hybrid simulation framework combining the predictions of the ANNs models with the accurate physical simulations of remaining substation nodes and pipes. We evaluate different architectures of Artificial Neural Network on diverse clusters from four synthetic DHNs with realistic heating demands. Results demonstrate that ANNs effectively learn cluster dynamics irrespective of topology or heating demand levels. Through our experiments, we achieved a 27% reduction in simulation time by replacing 39% of consumer nodes while maintaining acceptable accuracy in preserving the generated heat powers by sources.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"17 ","pages":"Article 100393"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000594/pdfft?md5=0c04fef1e20df0e384376520d8322eae&pid=1-s2.0-S2666546824000594-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency is further enhanced by the capacity of these networks to integrate renewable heat sources and thermal storage systems. However, integration of these systems adds complexity to the physical dynamics of the network, necessitating complex dynamic simulation models. These dynamic physical simulations are computationally expensive, limiting their adoption, particularly in large-scale networks. To address this challenge, we propose a methodology utilizing Artificial Neural Networks (ANNs) to reduce the computational time associated with the DHNs dynamic simulations. Our approach consists in replacing predefined clusters of substations within the DHNs with trained surrogate ANNs models, effectively transforming these clusters into single nodes. This creates a hybrid simulation framework combining the predictions of the ANNs models with the accurate physical simulations of remaining substation nodes and pipes. We evaluate different architectures of Artificial Neural Network on diverse clusters from four synthetic DHNs with realistic heating demands. Results demonstrate that ANNs effectively learn cluster dynamics irrespective of topology or heating demand levels. Through our experiments, we achieved a 27% reduction in simulation time by replacing 39% of consumer nodes while maintaining acceptable accuracy in preserving the generated heat powers by sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习减少拓扑结构,加速区域供热的动态模拟
区域供热网络(DHNs)通过相互连接的绝缘管道将当地热源与当地用户连接起来,为城市地区提供了高效的热量分配解决方案。由于这些网络能够整合可再生热源和蓄热系统,从而进一步提高了效率。然而,这些系统的集成增加了网络物理动态的复杂性,因此需要复杂的动态模拟模型。这些动态物理模拟计算成本高昂,限制了它们的应用,尤其是在大规模网络中。为了应对这一挑战,我们提出了一种利用人工神经网络(ANN)的方法,以减少与 DHNs 动态模拟相关的计算时间。我们的方法包括用训练有素的代理 ANNs 模型取代 DHN 中预定义的变电站群,有效地将这些群转变为单个节点。这就创建了一个混合模拟框架,将人工神经网络模型的预测与剩余变电站节点和管道的精确物理模拟相结合。我们对人工神经网络的不同架构进行了评估,这些架构来自四个具有实际供热需求的合成 DHN 的不同集群。结果表明,无论拓扑结构或供热需求水平如何,人工神经网络都能有效学习集群动态。通过实验,我们替换了 39% 的用户节点,减少了 27% 的模拟时间,同时在保留热源产生的热功率方面保持了可接受的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction Integrating local knowledge with ChatGPT-like large-scale language models for enhanced societal comprehension of carbon neutrality Optimization of a Bayesian game for Peer-to-Peer trading among prosumers under incomplete information via a CNN-LSTM-ATT Parameter sensitivity analysis for diesel spray penetration prediction based on GA-BP neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1