Membrane-mediated modulation of mitochondrial physiology by terahertz waves.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-06-03 eCollection Date: 2024-07-01 DOI:10.1364/BOE.528706
Mengyao Lei, Tingrong Zhang, Xiaoyun Lu, Xiaofei Zhao, Hongguang Wang, Jiangang Long, Zhuoyang Lu
{"title":"Membrane-mediated modulation of mitochondrial physiology by terahertz waves.","authors":"Mengyao Lei, Tingrong Zhang, Xiaoyun Lu, Xiaofei Zhao, Hongguang Wang, Jiangang Long, Zhuoyang Lu","doi":"10.1364/BOE.528706","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive studies have demonstrated the diverse impacts of electromagnetic waves at gigahertz and terahertz (THz) frequencies on cytoplasmic membrane properties. However, there is little evidence of these impacts on intracellular membranes, particularly mitochondrial membranes crucial for mitochondrial physiology. In this study, human neuroblast-like cells were exposed to continuous 0.1 THz radiation at an average power density of 33 mW/cm<sup>2</sup>. The analysis revealed that THz exposure significantly altered the mitochondrial ultrastructure. THz waves enhanced the enzymatic activity of the mitochondrial respiratory chain but disrupted supercomplex assembly, compromising mitochondrial respiration. Molecular dynamics simulations revealed altered rates of change in the quantity of hydrogen bonds and infiltration of water molecules in lipid bilayers containing cardiolipin, indicating the specific behavior of cardiolipin, a signature phospholipid in mitochondria, under THz exposure. These findings suggest that THz radiation can significantly alter mitochondrial membrane properties, impacting mitochondrial physiology through a mechanism related to mitochondrial membrane, and provide deeper insight into the bioeffects of THz radiation.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.528706","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive studies have demonstrated the diverse impacts of electromagnetic waves at gigahertz and terahertz (THz) frequencies on cytoplasmic membrane properties. However, there is little evidence of these impacts on intracellular membranes, particularly mitochondrial membranes crucial for mitochondrial physiology. In this study, human neuroblast-like cells were exposed to continuous 0.1 THz radiation at an average power density of 33 mW/cm2. The analysis revealed that THz exposure significantly altered the mitochondrial ultrastructure. THz waves enhanced the enzymatic activity of the mitochondrial respiratory chain but disrupted supercomplex assembly, compromising mitochondrial respiration. Molecular dynamics simulations revealed altered rates of change in the quantity of hydrogen bonds and infiltration of water molecules in lipid bilayers containing cardiolipin, indicating the specific behavior of cardiolipin, a signature phospholipid in mitochondria, under THz exposure. These findings suggest that THz radiation can significantly alter mitochondrial membrane properties, impacting mitochondrial physiology through a mechanism related to mitochondrial membrane, and provide deeper insight into the bioeffects of THz radiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹波对线粒体生理机能的膜介导调节
大量研究表明,千兆赫兹和太赫兹(THz)频率的电磁波对细胞质膜特性有多种影响。然而,这些影响对细胞内膜,尤其是对线粒体生理至关重要的线粒体膜的影响却鲜有证据。在这项研究中,人类神经母细胞样细胞连续暴露在平均功率密度为 33 mW/cm2 的 0.1 THz 辐射下。分析表明,太赫兹辐射极大地改变了线粒体的超微结构。太赫兹波增强了线粒体呼吸链的酶活性,但破坏了超复合体的组装,影响了线粒体呼吸。分子动力学模拟显示,在含有心磷脂的脂质双分子层中,氢键数量和水分子渗入的变化率发生了改变,这表明线粒体中的标志性磷脂--心磷脂在太赫兹辐射下的特殊行为。这些研究结果表明,太赫兹辐射能显著改变线粒体膜的特性,通过与线粒体膜相关的机制影响线粒体的生理机能,并使人们对太赫兹辐射的生物效应有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Correlating stroke risk with non-invasive cerebrovascular perfusion dynamics using a portable speckle contrast optical spectroscopy laser device. Improvements on speed, stability and field of view in adaptive optics OCT for anterior retinal imaging using a pyramid wavefront sensor. Light-adapted flicker-optoretinography based on raster-scan optical coherence tomography towards clinical translation. Photodynamic opening of the blood-brain barrier affects meningeal lymphatics and the brain's drainage in healthy male mice. Stand-alone segmentation of blood flow pulsatility measured with diffuse correlation spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1