Substrate complexity buffers negative interactions in a synthetic community of leaf litter degraders.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-07-12 DOI:10.1093/femsec/fiae102
Parmis Abdoli, Clément Vulin, Miriam Lepiz, Alexander B Chase, Claudia Weihe, Alejandra Rodríguez-Verdugo
{"title":"Substrate complexity buffers negative interactions in a synthetic community of leaf litter degraders.","authors":"Parmis Abdoli, Clément Vulin, Miriam Lepiz, Alexander B Chase, Claudia Weihe, Alejandra Rodríguez-Verdugo","doi":"10.1093/femsec/fiae102","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae102","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
底物的复杂性可缓冲枯落叶降解生物合成群落中的负面相互作用。
叶丛微生物集体降解植物多糖,影响陆地与大气的碳交换。一个悬而未决的问题是,底物的复杂性(即糖的结构和细胞外酶的外部加工量)如何影响物种间的相互作用。我们检验了这样一个假设:单糖(如木糖)通过资源竞争促进负面相互作用,而多糖(如木聚糖)通过资源分配或细胞外酶之间的协同作用促进中性或正面相互作用。我们组建了一个从南加州草地分离出来的三品种落叶降解细菌群落。在多糖木聚糖中,成对物种稳定共存,在共培养和单培养中同样生长。相反,在单糖木糖中,竞争排斥和负作用占主导地位。这些成对动态在三物种群落中保持一致:所有三个物种在木聚糖中共存,而只有两个物种在木糖中共存,其中一个物种能够使用蛋白胨。数学模型显示,在木糖中,这些动态可以用资源竞争来解释。相反,该模型无法预测木糖中的共存模式,这表明在生物聚合物降解过程中还存在其他相互作用。总之,我们的研究表明,底物的复杂性会影响枯落叶降解合成微生物群落中物种间的相互作用和共存模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts. Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats. Spinach Seed Microbiome Characteristics Linked to Suppressiveness Against Globisporangium ultimum Damping-Off. Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms. Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1