Mia M Bengtsson, Marita Helgesen, Haitao Wang, Stein Fredriksen, Kjell Magnus Norderhaug
{"title":"Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts.","authors":"Mia M Bengtsson, Marita Helgesen, Haitao Wang, Stein Fredriksen, Kjell Magnus Norderhaug","doi":"10.1093/femsec/fiaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima. Starved sea urchins served as experimental control. Amplicons of the 16S rRNA gene were analyzed from fecal pellets. One dominant symbiont (Psychromonas marina) accounted for 44% of all sequence reads and was especially abundant in the sea urchins fed seaweed diets. The starved and field captured sea urchins consistently displayed higher diversity than the seaweed-fed sea urchins. Cloning and sequencing of the nifH gene revealed diverse nitrogen fixers. We demonstrate that the sea urchin intestinal microbiome is dynamic, with bacterial communities that are plastic depending on diet and have the capacity for nitrogen fixation. This reflects the dietary flexibility of these sea urchins, and their intestinal microbiota could be a key component in understanding catastrophic kelp forest grazing events.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima. Starved sea urchins served as experimental control. Amplicons of the 16S rRNA gene were analyzed from fecal pellets. One dominant symbiont (Psychromonas marina) accounted for 44% of all sequence reads and was especially abundant in the sea urchins fed seaweed diets. The starved and field captured sea urchins consistently displayed higher diversity than the seaweed-fed sea urchins. Cloning and sequencing of the nifH gene revealed diverse nitrogen fixers. We demonstrate that the sea urchin intestinal microbiome is dynamic, with bacterial communities that are plastic depending on diet and have the capacity for nitrogen fixation. This reflects the dietary flexibility of these sea urchins, and their intestinal microbiota could be a key component in understanding catastrophic kelp forest grazing events.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms