Breathing Easy: A Python Dive into Air Quality Analysis

T. A. Sai Srinivas, M. Bharathi
{"title":"Breathing Easy: A Python Dive into Air Quality Analysis","authors":"T. A. Sai Srinivas, M. Bharathi","doi":"10.46610/rrmlcc.2024.v03i01.003","DOIUrl":null,"url":null,"abstract":"In this comparative analysis, we delve into the disparities between the US Air Quality Index (AQI) and the Indian AQI methodologies, with a specific focus on PM2.5 concentrations. Through the utilization of bar charts, we visually represent AQI values derived from both methodologies, thus elucidating the divergences and convergences in outcomes. This visual depiction serves to highlight how different regions interpret air quality data, shedding light on the complexities inherent in air quality assessment. Furthermore, our study goes beyond mere comparison by offering insights into the AQI calculation process. We emphasize the necessity of tailoring methodologies to specific geographical and environmental contexts, recognizing the importance of regional nuances in accurately assessing air quality conditions. By tending to these varieties, our examination adds to a more profound comprehension of air quality evaluation and illuminates future endeavours in the normalization and variation of AQI techniques around the world. Ultimately, our findings underscore the imperative of considering regional differences in formulating AQI standards to facilitate more effective environmental management strategies on a global scale.","PeriodicalId":149011,"journal":{"name":"Research & Review: Machine Learning and Cloud Computing","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Review: Machine Learning and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/rrmlcc.2024.v03i01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this comparative analysis, we delve into the disparities between the US Air Quality Index (AQI) and the Indian AQI methodologies, with a specific focus on PM2.5 concentrations. Through the utilization of bar charts, we visually represent AQI values derived from both methodologies, thus elucidating the divergences and convergences in outcomes. This visual depiction serves to highlight how different regions interpret air quality data, shedding light on the complexities inherent in air quality assessment. Furthermore, our study goes beyond mere comparison by offering insights into the AQI calculation process. We emphasize the necessity of tailoring methodologies to specific geographical and environmental contexts, recognizing the importance of regional nuances in accurately assessing air quality conditions. By tending to these varieties, our examination adds to a more profound comprehension of air quality evaluation and illuminates future endeavours in the normalization and variation of AQI techniques around the world. Ultimately, our findings underscore the imperative of considering regional differences in formulating AQI standards to facilitate more effective environmental management strategies on a global scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻松呼吸:用 Python 深入分析空气质量
在本比较分析中,我们深入研究了美国空气质量指数(AQI)和印度空气质量指数方法之间的差异,并特别关注 PM2.5 浓度。通过使用条形图,我们直观地表示了两种方法得出的空气质量指数值,从而阐明了结果的差异和趋同。这种直观描述有助于突出不同地区如何解释空气质量数据,揭示空气质量评估的内在复杂性。此外,我们的研究不仅限于比较,还提供了对空气质量指数计算过程的见解。我们强调了根据特定的地理和环境背景调整方法的必要性,认识到地区差异对准确评估空气质量状况的重要性。通过对这些差异的研究,我们对空气质量评估有了更深刻的理解,并为今后全球空气质量指数技术的规范化和差异化工作提供了启示。最终,我们的研究结果强调,在制定空气质量指数标准时必须考虑地区差异,以促进全球范围内更有效的环境管理战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breathing Easy: A Python Dive into Air Quality Analysis Leveraging AI and ML in Rapid Saliva Drug Testing for Efficient Identification of Drug Users Human-Computer Interaction Techniques for Explainable Artificial Intelligence Systems Facial Emotion Song Recommender System Enhancing Market Basket Analysis Through the Interplay of Advertisement and Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1