Sayaka Miura, Rio Yamagishi, Mano Ando, Arisa Teramae, Yuna Hachikubo, Yoshiyuki Yokoyama, Satoshi Takei
{"title":"Cationic Gas-Permeable Mold Fabrication Using Sol–Gel Polymerization for Nano-Injection Molding","authors":"Sayaka Miura, Rio Yamagishi, Mano Ando, Arisa Teramae, Yuna Hachikubo, Yoshiyuki Yokoyama, Satoshi Takei","doi":"10.3390/gels10070453","DOIUrl":null,"url":null,"abstract":"Cationic gas-permeable molds fabricated via sol–gel polymerization undergo cationic polymerization using epoxide, resulting in gas permeability owing to their cross-linked structures. By applying this cationic gas-permeable mold to nano-injection molding, which is used for the mass production of resins, nano-protrusion structures with a height of approximately 300 nm and a pitch of approximately 400 nm were produced. The molding defects caused by gas entrapment in the air and cavities when using conventional gas-impermeable metal molds were improved, and the cationic gas-permeable mold could be continuously fabricated for 3000 shots under non-vacuum conditions. The results of the mechanical evaluations showed improved thermal stability and Martens hardness, which is expected to lead to the advanced production of resin nano-structures. Furthermore, the surface roughness of the nano-protrusion structures fabricated using injection molding improved the water contact angle by approximately 46°, contributing to the development of various hydrophobic materials in the future.","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10070453","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cationic gas-permeable molds fabricated via sol–gel polymerization undergo cationic polymerization using epoxide, resulting in gas permeability owing to their cross-linked structures. By applying this cationic gas-permeable mold to nano-injection molding, which is used for the mass production of resins, nano-protrusion structures with a height of approximately 300 nm and a pitch of approximately 400 nm were produced. The molding defects caused by gas entrapment in the air and cavities when using conventional gas-impermeable metal molds were improved, and the cationic gas-permeable mold could be continuously fabricated for 3000 shots under non-vacuum conditions. The results of the mechanical evaluations showed improved thermal stability and Martens hardness, which is expected to lead to the advanced production of resin nano-structures. Furthermore, the surface roughness of the nano-protrusion structures fabricated using injection molding improved the water contact angle by approximately 46°, contributing to the development of various hydrophobic materials in the future.