Polythiophene/Copper Vanadate Nanoribbons and their Electrochemical Sensing Properties for Detecting Benzoic Acid

Xingxing Zhu, Yong Zhang, Qianmin Cong, Zhengyu Cai, Lizhai Pei
{"title":"Polythiophene/Copper Vanadate Nanoribbons and their Electrochemical\nSensing Properties for Detecting Benzoic Acid","authors":"Xingxing Zhu, Yong Zhang, Qianmin Cong, Zhengyu Cai, Lizhai Pei","doi":"10.2174/0118764029318334240625115029","DOIUrl":null,"url":null,"abstract":"\n\nExcessive intake of benzoic acid may cause serious diseases, including\ndisordered metabolism, abdominal pain, and diarrhea. Hence, it is important to explore a reliable\nmethod to determine the quantity of benzoic acid for protecting human health. In this regard, polythiophene/copper vanadate nanoribbon composites act as electrode materials for the detection of\nbenzoic acid.\n\n\n\nThe objective of this research was to synthesize polythiophene/copper vanadate nanoribbons via an in-situ polymerization approach and evaluate their electrochemical performance for the\ndetection of benzoic acid.\n\n\n\nPolythiophene/copper vanadate nanoribbons were obtained via an in-situ polymerization\napproach. The obtained composite nanoribbons were analyzed using X-ray diffraction, electron microscopy, Fourier Transform Infrared Spectroscopy, and electrochemical method.\n\n\n\nAmorphous polythiophene nanoparticles with a size of less than 100 nm were homogeneously attached to the copper vanadate nanoribbons. Electrochemical sensing properties of the polythiophene/copper vanadate nanoribbons modified electrode for detecting benzoic acid were analyzed using the Cyclic Voltammetry (CV) method. An irreversible CV peak was observed at +0.36\nV in 0.1 M KCl solution with 2 mM benzoic acid. The polythiophene/copper vanadate nanoribbons\nmodified electrode indicated a linear range of 0.001-2 mM with the limit of detection (LOD) of\n0.29 µM.\n\n\n\nPolythiophene greatly enhanced the electrochemical sensing properties of copper vanadate nanoribbons. Polythiophene/copper vanadate nanoribbons modified electrode was found to be\nstable and repeatable owing to the synergistic effect of various components.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118764029318334240625115029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive intake of benzoic acid may cause serious diseases, including disordered metabolism, abdominal pain, and diarrhea. Hence, it is important to explore a reliable method to determine the quantity of benzoic acid for protecting human health. In this regard, polythiophene/copper vanadate nanoribbon composites act as electrode materials for the detection of benzoic acid. The objective of this research was to synthesize polythiophene/copper vanadate nanoribbons via an in-situ polymerization approach and evaluate their electrochemical performance for the detection of benzoic acid. Polythiophene/copper vanadate nanoribbons were obtained via an in-situ polymerization approach. The obtained composite nanoribbons were analyzed using X-ray diffraction, electron microscopy, Fourier Transform Infrared Spectroscopy, and electrochemical method. Amorphous polythiophene nanoparticles with a size of less than 100 nm were homogeneously attached to the copper vanadate nanoribbons. Electrochemical sensing properties of the polythiophene/copper vanadate nanoribbons modified electrode for detecting benzoic acid were analyzed using the Cyclic Voltammetry (CV) method. An irreversible CV peak was observed at +0.36 V in 0.1 M KCl solution with 2 mM benzoic acid. The polythiophene/copper vanadate nanoribbons modified electrode indicated a linear range of 0.001-2 mM with the limit of detection (LOD) of 0.29 µM. Polythiophene greatly enhanced the electrochemical sensing properties of copper vanadate nanoribbons. Polythiophene/copper vanadate nanoribbons modified electrode was found to be stable and repeatable owing to the synergistic effect of various components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测苯甲酸的聚噻吩/钒酸铜纳米带及其电化学传感特性
过量摄入苯甲酸可能会引起严重疾病,包括代谢紊乱、腹痛和腹泻。因此,探索一种可靠的方法来测定苯甲酸的含量以保护人类健康非常重要。本研究旨在通过原位聚合方法合成聚噻吩/钒酸铜纳米带,并评估其检测苯甲酸的电化学性能。利用 X 射线衍射、电子显微镜、傅立叶变换红外光谱和电化学方法对所获得的复合纳米带进行了分析。采用循环伏安法(CV)分析了聚噻吩/钒酸铜纳米带修饰电极检测苯甲酸的电化学传感特性。在含有 2 mM 苯甲酸的 0.1 M KCl 溶液中,在 +0.36V 处观察到一个不可逆的 CV 峰。聚噻吩/钒酸铜纳米带修饰电极的线性范围为 0.001-2 mM,检测限(LOD)为 0.29 µM。由于各种成分的协同作用,聚噻吩/钒酸铜纳米带修饰电极具有最佳的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro and Nanosystems
Micro and Nanosystems Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
50
期刊最新文献
Release Kinetics of Sulfentrazone from Chitosan Clay Sulfentrazone Nanocomposite Polythiophene/Copper Vanadate Nanoribbons and their Electrochemical Sensing Properties for Detecting Benzoic Acid Pharmaceutical Applications and Advances with Zetasizer: An Essential Analytical Tool for Size and Zeta Potential Analysis Global RC Interconnects with ADL Buffers for Low-Power Applications Transethosomal Carrier of Curcumin for Improved Topical Delivery: Optimization, In-vitro and Stability Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1