Angela Cirulli, Livia Neves Borgheti-Cardoso, Núria Torras, Elena Martinez
{"title":"Mimicking human skin constructs using norbornene-pullulan-based hydrogels","authors":"Angela Cirulli, Livia Neves Borgheti-Cardoso, Núria Torras, Elena Martinez","doi":"10.36922/ijb.3395","DOIUrl":null,"url":null,"abstract":"There has been a huge demand for engineered skin tissues in the realms of both in vitro and in vivo applications. Selecting the right material scaffold is a critical consideration in making engineered skin tissues, since it should possess a good balance between elasticity and mechanical stability while promoting an adequate cell microenvironment to support both the dermal and the epidermal compartments of skin tissue. In this study, 3D-bioprinted norbornene-pullulan photocrosslinkable hydrogels were utilized as alternative scaffolds to produce epithelized dermal skin models. By employing visible light, 2.5 mm3 cell-laden hydrogels could be printed in 10 s. The thiol-ene photocrosslinking chemistry employed in this work enabled the formation of a well-defined extracellular matrix with orthogonal crosslinks, where encapsulated fibroblasts maintained high cellular viability rates. Through this method, an epidermal layer could be grown on top of the fibroblasts. The coexistence and interaction of human fibroblasts and keratinocytes were visualized by determining the expression of specific markers. This approach represents a promising starting point for the development of photocrosslinkable hydrogel-based human skin constructs by using thiol-ene norbornene chemistry, paving the way toward manufacture of complex in vitro models of human tissues. ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.3395","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There has been a huge demand for engineered skin tissues in the realms of both in vitro and in vivo applications. Selecting the right material scaffold is a critical consideration in making engineered skin tissues, since it should possess a good balance between elasticity and mechanical stability while promoting an adequate cell microenvironment to support both the dermal and the epidermal compartments of skin tissue. In this study, 3D-bioprinted norbornene-pullulan photocrosslinkable hydrogels were utilized as alternative scaffolds to produce epithelized dermal skin models. By employing visible light, 2.5 mm3 cell-laden hydrogels could be printed in 10 s. The thiol-ene photocrosslinking chemistry employed in this work enabled the formation of a well-defined extracellular matrix with orthogonal crosslinks, where encapsulated fibroblasts maintained high cellular viability rates. Through this method, an epidermal layer could be grown on top of the fibroblasts. The coexistence and interaction of human fibroblasts and keratinocytes were visualized by determining the expression of specific markers. This approach represents a promising starting point for the development of photocrosslinkable hydrogel-based human skin constructs by using thiol-ene norbornene chemistry, paving the way toward manufacture of complex in vitro models of human tissues.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.