Experimental and numerical approaches for optimizing conjunction area design to enhance switching efficiency in single-nozzle multi-ink bioprinting systems
Mitsuyuki Hidaka, Masaru Kojima, Colin Zhang, Yasunori Okano, Shinji Sakai
{"title":"Experimental and numerical approaches for optimizing conjunction area design to enhance switching efficiency in single-nozzle multi-ink bioprinting systems","authors":"Mitsuyuki Hidaka, Masaru Kojima, Colin Zhang, Yasunori Okano, Shinji Sakai","doi":"10.36922/ijb.4091","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) bioprinting has emerged as a promising technology in the field of tissue engineering. Notably, the advancement of multi-ink printing technology is crucial for further progress in 3D bioprinting. In this study, we developed a single-nozzle system with multiple inlets for multi-ink bioprinting that achieves high switching efficiency through a combination of numerical and experimental approaches. This single-nozzle system demonstrates the potential for higher-resolution printing and quicker ink switching compared with multi-nozzle printing systems. In general, inks used in bioprinting have low viscosity (<10 Pa・s); however, their behaviors inside a single nozzle have not been thoroughly investigated. Initially, we conducted numerical simulations to analyze fluid behavior within single nozzles, focusing on the junction of multiple ink inlets, to propose an advanced nozzle design. We proposed a novel index, Se, for evaluating the switching behavior of the bioink inside the single nozzle. Numerical simulation results showed that the nozzle design and combinations of inks affected Se. In addition, subsequent experimental analysis confirmed the consistency of the simulation results. The proposed design, developed using simulations, featured a single nozzle with enhanced switching efficiency, demonstrating a smaller transition length compared with that of conventional single nozzles or T-junction nozzles in printing line structures of different viscous inks. This is the first study to employ numerical simulation in designing a single nozzle with multiple inlets to switch ink in multi-ink bioprinting. This methodology will broaden the potential of single nozzles for high-resolution printing in bioprinting applications.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.4091","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising technology in the field of tissue engineering. Notably, the advancement of multi-ink printing technology is crucial for further progress in 3D bioprinting. In this study, we developed a single-nozzle system with multiple inlets for multi-ink bioprinting that achieves high switching efficiency through a combination of numerical and experimental approaches. This single-nozzle system demonstrates the potential for higher-resolution printing and quicker ink switching compared with multi-nozzle printing systems. In general, inks used in bioprinting have low viscosity (<10 Pa・s); however, their behaviors inside a single nozzle have not been thoroughly investigated. Initially, we conducted numerical simulations to analyze fluid behavior within single nozzles, focusing on the junction of multiple ink inlets, to propose an advanced nozzle design. We proposed a novel index, Se, for evaluating the switching behavior of the bioink inside the single nozzle. Numerical simulation results showed that the nozzle design and combinations of inks affected Se. In addition, subsequent experimental analysis confirmed the consistency of the simulation results. The proposed design, developed using simulations, featured a single nozzle with enhanced switching efficiency, demonstrating a smaller transition length compared with that of conventional single nozzles or T-junction nozzles in printing line structures of different viscous inks. This is the first study to employ numerical simulation in designing a single nozzle with multiple inlets to switch ink in multi-ink bioprinting. This methodology will broaden the potential of single nozzles for high-resolution printing in bioprinting applications.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.