K. Yeung, Chi-Yeung Mang, Quan-Jing Mei, Chi Ho Wong, Chak-Yin Tang, Xin Zhao, Wing-Cheung Law, G. Tsui, Zhenjia Huang
{"title":"Design and fabrication of anisotropic SiO2 gyroid bioscaffolds with tunable properties","authors":"K. Yeung, Chi-Yeung Mang, Quan-Jing Mei, Chi Ho Wong, Chak-Yin Tang, Xin Zhao, Wing-Cheung Law, G. Tsui, Zhenjia Huang","doi":"10.36922/ijb.3609","DOIUrl":null,"url":null,"abstract":"This paper introduces a mathematical approach and additive manufacturing process to customize the mechanical properties of sheet gyroid bioscaffolds and mimicking the intricate architecture of natural bone. By defining the parameters of the level-set equation, scaffolds with spatially controlled porosity and anisotropic properties can be fabricated though digital light processing and microwave heating. A new susceptor-assisted hybrid pyrolysis-sintering process was developed, resulting in a significant enhancement in quality and mechanical properties of the three-dimensional (3D)-printed ceramic compared to conventional methods. The enhancements are originated from the improved densification, accelerated sintering kinetics, promotion of cristobalite phase transformation, and reduced defect volume under microwave heating. Sheet gyroid scaffolds with radially graded porosity and anisotropic properties were fabricated. Despite the porosity distribution, an increase in the unit cell’s aspect ratio amplified the anisotropic mechanical properties. This was also accompanied by a slight decrease in cell proliferation efficiency possibly due to variations in Gaussian curvatures. ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.3609","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a mathematical approach and additive manufacturing process to customize the mechanical properties of sheet gyroid bioscaffolds and mimicking the intricate architecture of natural bone. By defining the parameters of the level-set equation, scaffolds with spatially controlled porosity and anisotropic properties can be fabricated though digital light processing and microwave heating. A new susceptor-assisted hybrid pyrolysis-sintering process was developed, resulting in a significant enhancement in quality and mechanical properties of the three-dimensional (3D)-printed ceramic compared to conventional methods. The enhancements are originated from the improved densification, accelerated sintering kinetics, promotion of cristobalite phase transformation, and reduced defect volume under microwave heating. Sheet gyroid scaffolds with radially graded porosity and anisotropic properties were fabricated. Despite the porosity distribution, an increase in the unit cell’s aspect ratio amplified the anisotropic mechanical properties. This was also accompanied by a slight decrease in cell proliferation efficiency possibly due to variations in Gaussian curvatures.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.