Deep learning-based segmentation of 3D ultrasound images of the thyroid

Roxane Munsterman , Tim Boers , Sicco J. Braak , Jelmer M. Wolterink , Michel Versluis , Srirang Manohar
{"title":"Deep learning-based segmentation of 3D ultrasound images of the thyroid","authors":"Roxane Munsterman ,&nbsp;Tim Boers ,&nbsp;Sicco J. Braak ,&nbsp;Jelmer M. Wolterink ,&nbsp;Michel Versluis ,&nbsp;Srirang Manohar","doi":"10.1016/j.wfumbo.2024.100055","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the study was to develop a method for segmentation of the thyroid, carotid artery (CA), and jugular vein (JV) using 3D ultrasound data. This method forms the basis for a computer-assisted needle-based intervention for thyroid nodules and thyroid volume estimation accuracy. Two datasets were used: the first was acquired using a tracked 2D sweep and the second with a 3D matrix transducer. A 2D and 3D U-Net model were trained on the full data set with different strategies (2D, majority vote in 2.5D and 3D). The 2D model achieved the best results for the tracked 2D sweep data set in terms of median Dice Score Coefficient (DSC) (0.934, 0.924, 0.897) and Hausdorff distance at the 95 percentile (HD<sub>95</sub>) (1.206, 0.588, 1.571 mm) for the thyroid, CA, and JV, respectively. For the matrix data set, the 3D model gave overall the best results in its median DSC (0.869, 0.930, 0.856) and HD<sub>95</sub> (1.814, 0.606, 1.405 mm) for the thyroid, CA, and JV, respectively, showing comparable results in vessel segmentation but inferior results in thyroid segmentation compared to the tracked sweep data set. The model demonstrated lower median volume estimation errors in the tracked sweep data set (4.45 %) compared to the matrix data set (7.40 %) and the ellipsoid formula (13.84 %) for thyroid volume estimation. This work shows that automatic segmentation in 3D ultrasound of the human neck is best performed with 3D ultrasound. Improving the quality of the 3D data is important for the development of a planning and navigation method to be used with needle-based interventions for thyroid nodules.</p></div>","PeriodicalId":101281,"journal":{"name":"WFUMB Ultrasound Open","volume":"2 2","pages":"Article 100055"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949668324000235/pdfft?md5=33e77984ac9b8fcd628e6b4f206b9cf2&pid=1-s2.0-S2949668324000235-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WFUMB Ultrasound Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949668324000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the study was to develop a method for segmentation of the thyroid, carotid artery (CA), and jugular vein (JV) using 3D ultrasound data. This method forms the basis for a computer-assisted needle-based intervention for thyroid nodules and thyroid volume estimation accuracy. Two datasets were used: the first was acquired using a tracked 2D sweep and the second with a 3D matrix transducer. A 2D and 3D U-Net model were trained on the full data set with different strategies (2D, majority vote in 2.5D and 3D). The 2D model achieved the best results for the tracked 2D sweep data set in terms of median Dice Score Coefficient (DSC) (0.934, 0.924, 0.897) and Hausdorff distance at the 95 percentile (HD95) (1.206, 0.588, 1.571 mm) for the thyroid, CA, and JV, respectively. For the matrix data set, the 3D model gave overall the best results in its median DSC (0.869, 0.930, 0.856) and HD95 (1.814, 0.606, 1.405 mm) for the thyroid, CA, and JV, respectively, showing comparable results in vessel segmentation but inferior results in thyroid segmentation compared to the tracked sweep data set. The model demonstrated lower median volume estimation errors in the tracked sweep data set (4.45 %) compared to the matrix data set (7.40 %) and the ellipsoid formula (13.84 %) for thyroid volume estimation. This work shows that automatic segmentation in 3D ultrasound of the human neck is best performed with 3D ultrasound. Improving the quality of the 3D data is important for the development of a planning and navigation method to be used with needle-based interventions for thyroid nodules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的甲状腺三维超声图像分割技术
这项研究的目的是开发一种利用三维超声数据分割甲状腺、颈动脉(CA)和颈静脉(JV)的方法。这种方法是计算机辅助针式甲状腺结节干预和甲状腺体积估计准确性的基础。我们使用了两个数据集:第一个数据集是使用跟踪二维扫描采集的,第二个数据集是使用三维矩阵换能器采集的。使用不同的策略(2D、2.5D 和 3D 中的多数票)在完整数据集上训练了 2D 和 3D U-Net 模型。就甲状腺、CA 和 JV 的中位 Dice Score Coefficient(DSC)(0.934、0.924、0.897)和 95 百分位数的 Hausdorff 距离(HD95)(1.206、0.588、1.571 毫米)而言,二维模型在跟踪二维扫描数据集方面取得了最佳结果。对于矩阵数据集,三维模型在甲状腺、CA 和 JV 的中位 DSC(0.869、0.930、0.856)和 HD95(1.814、0.606、1.405 毫米)方面分别给出了总体最佳结果,在血管分割方面显示出与跟踪扫描数据集相当的结果,但在甲状腺分割方面的结果较差。与矩阵数据集(7.40%)和椭圆体公式(13.84%)相比,该模型在甲状腺体积估算方面显示出更低的跟踪扫描数据集体积估算误差中值(4.45%)。这项工作表明,人体颈部三维超声波自动分割最好使用三维超声波。提高三维数据的质量对于开发用于甲状腺结节针式介入治疗的规划和导航方法非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Added clinical advantage of combining ultrasound with radiograph in assessing ankle injuries: Comparison with MRI Treatment of inoperable pancreatic adenocarcinoma with focused ultrasound and microbubbles in patients receiving chemotherapy Breast cancer ultrasound image segmentation using improved 3DUnet++ Utilization of evoked vibrational signatures under ultrasound examination as a novel method of tissue classification Protocol refinement and inter- and intra-rater reliability assessment of ultrasound-based measurements of hamstring architecture, and echo intensity, and intra-rater reliability of shear wave elastography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1