Protocol refinement and inter- and intra-rater reliability assessment of ultrasound-based measurements of hamstring architecture, and echo intensity, and intra-rater reliability of shear wave elastography

Maria Belinda Cristina C. Fidel , Jan Tyrone Cabrera , Christine Grace V. Ogerio , Johann Querijero , Helen A. Banwell , Consuelo B. Gonzalez-Suarez
{"title":"Protocol refinement and inter- and intra-rater reliability assessment of ultrasound-based measurements of hamstring architecture, and echo intensity, and intra-rater reliability of shear wave elastography","authors":"Maria Belinda Cristina C. Fidel ,&nbsp;Jan Tyrone Cabrera ,&nbsp;Christine Grace V. Ogerio ,&nbsp;Johann Querijero ,&nbsp;Helen A. Banwell ,&nbsp;Consuelo B. Gonzalez-Suarez","doi":"10.1016/j.wfumbo.2025.100079","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>The increase in hamstring injuries highlights gaps in current understanding and prevention strategies. Hamstring architecture, quality, and mechanical properties influence force production, offering key insights into muscle health and function. This study aims to refine a standardized protocol for hamstring image acquisition and digitization and to assess inter- and intra-rater reliability of measurements like fascicle length, pennation angle, muscle thickness, cross-sectional area, echo intensity, and shear wave elastography.</div></div><div><h3>Methods</h3><div>This study had two phases: pilot and protocol refinement and intra- and inter-rater reliability of image digitization of fascicle length, pennation angle, muscle thickness, cross-sectional area, and echo intensity and intra-rater reliability of shear wave elastography using intra-class correlation coefficient.</div></div><div><h3>Results</h3><div>This study developed and refined a hamstring image acquisition and digitization protocol, focusing on architecture, quality, and stiffness along its length at rest and during isometric contraction. Using Image J, intra-rater reliability for digitizing fascicle length, pennation angle, muscle thickness, cross-sectional area, and echo intensity was excellent. Inter-rater reliability ranged from moderate to excellent across all variables. Shear wave elastography showed moderate to excellent intra-rater reliability, with higher consistency during contraction than rest.</div></div><div><h3>Conclusion</h3><div>The authors refined a standardized protocol for ultrasound imaging of hamstring architecture, quality, and stiffness, as well as digitization of fascicle length, pennation angle, muscle thickness, cross-sectional area, and echo intensity at rest and during isometric contraction using ImageJ. The protocol demonstrated moderate to excellent intra- and inter-rater reliability, with image markings further enhancing measurement consistency.</div></div>","PeriodicalId":101281,"journal":{"name":"WFUMB Ultrasound Open","volume":"3 1","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WFUMB Ultrasound Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949668325000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

The increase in hamstring injuries highlights gaps in current understanding and prevention strategies. Hamstring architecture, quality, and mechanical properties influence force production, offering key insights into muscle health and function. This study aims to refine a standardized protocol for hamstring image acquisition and digitization and to assess inter- and intra-rater reliability of measurements like fascicle length, pennation angle, muscle thickness, cross-sectional area, echo intensity, and shear wave elastography.

Methods

This study had two phases: pilot and protocol refinement and intra- and inter-rater reliability of image digitization of fascicle length, pennation angle, muscle thickness, cross-sectional area, and echo intensity and intra-rater reliability of shear wave elastography using intra-class correlation coefficient.

Results

This study developed and refined a hamstring image acquisition and digitization protocol, focusing on architecture, quality, and stiffness along its length at rest and during isometric contraction. Using Image J, intra-rater reliability for digitizing fascicle length, pennation angle, muscle thickness, cross-sectional area, and echo intensity was excellent. Inter-rater reliability ranged from moderate to excellent across all variables. Shear wave elastography showed moderate to excellent intra-rater reliability, with higher consistency during contraction than rest.

Conclusion

The authors refined a standardized protocol for ultrasound imaging of hamstring architecture, quality, and stiffness, as well as digitization of fascicle length, pennation angle, muscle thickness, cross-sectional area, and echo intensity at rest and during isometric contraction using ImageJ. The protocol demonstrated moderate to excellent intra- and inter-rater reliability, with image markings further enhancing measurement consistency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Added clinical advantage of combining ultrasound with radiograph in assessing ankle injuries: Comparison with MRI Treatment of inoperable pancreatic adenocarcinoma with focused ultrasound and microbubbles in patients receiving chemotherapy Breast cancer ultrasound image segmentation using improved 3DUnet++ Utilization of evoked vibrational signatures under ultrasound examination as a novel method of tissue classification Protocol refinement and inter- and intra-rater reliability assessment of ultrasound-based measurements of hamstring architecture, and echo intensity, and intra-rater reliability of shear wave elastography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1